人类学学报 ›› 2023, Vol. 42 ›› Issue (03): 359-372.doi: 10.16359/j.1000-3193/AAS.2023.0006
杜雨薇1,2,3(), 张乐1,2(), 叶芷1,2,3, 裴树文1,2
收稿日期:
2022-07-04
修回日期:
2022-10-10
出版日期:
2023-06-15
发布日期:
2023-06-13
通讯作者:
张乐,副研究员,主要从事旧石器时代动物考古学研究。E-mail: zhangyue@ivpp.ac.cn
作者简介:
杜雨薇,博士研究生,主要从事旧石器时代动物考古学研究。E-mail: 基金资助:
DU Yuwei1,2,3(), ZHANG Yue1,2(), YE Zhi1,2,3, PEI Shuwen1,2
Received:
2022-07-04
Revised:
2022-10-10
Online:
2023-06-15
Published:
2023-06-13
摘要:
泥河湾盆地南部蔚县盆地区域的河湖相地层发育良好,并保存有丰富的考古材料与人类活动信息,在研究我国北方中更新世人类演化与行为方面有重要的价值。本文对蔚县盆地吉家庄遗址群4个地点出土的动物遗存进行了初步埋藏学观察与研究。结果显示,A与D地点的动物骨骼数量较少,反映的埋藏信息有限,不作为本文主要讨论对象;E地点出土的部分动物骨骼带有异地埋藏的特点,人类行为信息可能受到干扰,变得模糊;B地点动物化石接近原地埋藏,中更新世古人类应该是该地点动物资源的初级利用者与动物骨骼富集的主要动因。分析表明,B地点古人类于原地对大中型食草动物进行了肢解、割肉与敲骨取髓等多种活动,随后食肉动物又利用了这些动物骨骼的剩余营养成分,但动物骨骼数量与组成说明古人类在此地点的生存活动是短暂且有限的。
中图分类号:
杜雨薇, 张乐, 叶芷, 裴树文. 蔚县盆地吉家庄旧石器遗址动物骨骼的埋藏学分析[J]. 人类学学报, 2023, 42(03): 359-372.
DU Yuwei, ZHANG Yue, YE Zhi, PEI Shuwen. A taphonomic analysis of faunal remains from the Jijiazhuang Paleolithic site in the Yuxian Basin[J]. Acta Anthropologica Sinica, 2023, 42(03): 359-372.
图2 吉家庄遗址B与E地点出土的部分动物骨骼 a.马左下臼齿left lower molar of Equus sp.;b.鹿臼齿molar of Cervus sp.;c.牛左上前臼齿left upper premolar of Bovidae;d.啮齿类右侧下颌right mandible of Rodentia;e.鸟右侧肱骨right femur of Aves;f.犀颈椎cervical vertebra of Rhinocerotidae;g.瞪羚左侧角心left horn core of Gazella sp.
Fig.2 Some faunal specimens from JJZ-B and JJZ-E
地点Sites→ 动物种属Animal species↓ | A地点 | B地点 | D地点 | E地点 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NISP | MNI | NISP | MNI | NISP | MNI | NISP | MNI | ||||
兔类Lagomorpha | 0 | 0 | 3 | 1 | 1 | 1 | 2 | 2 | |||
啮齿类Rodentia | 0 | 0 | 8 | 2 | 2 | 1 | 8 | 2 | |||
狐Vulpes sp. | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
小型食肉类Small carnivores | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |||
马Equus sp. | 16 | 1 | 46 | 4 | 1 | 1 | 37 | 2 | |||
犀科Rhinocerotidae | 6 | 1 | 16 | 1 | 3 | 1 | 15 | 1 | |||
鹿Cervus sp. | 2 | 1 | 25 | 3 | 0 | 0 | 11 | 1 | |||
瞪羚Gazella sp. | 0 | 0 | 7 | 3 | 0 | 0 | 3 | 1 | |||
牛科Bovidae | 0 | 0 | 11 | 1 | 3 | 1 | 7 | 1 | |||
大型食草类Large herbivores | 7 | 1 | 27 | 2 | 3 | 1 | 13 | 2 | |||
小计Sum | 32 | 5 | 143 | 17 | 13 | 6 | 97 | 13 | |||
其他Others * | 0 | 0 | 13 | 0 | 0 | 0 | 14 | 0 | |||
总计Total | 32 | 156 | 13 | 111 |
表1 吉家庄遗址A, B, D与E地点出土动物种属的数量统计
Tab.1 Counts of animal species from JJZ-A, B, D and E
地点Sites→ 动物种属Animal species↓ | A地点 | B地点 | D地点 | E地点 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NISP | MNI | NISP | MNI | NISP | MNI | NISP | MNI | ||||
兔类Lagomorpha | 0 | 0 | 3 | 1 | 1 | 1 | 2 | 2 | |||
啮齿类Rodentia | 0 | 0 | 8 | 2 | 2 | 1 | 8 | 2 | |||
狐Vulpes sp. | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
小型食肉类Small carnivores | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |||
马Equus sp. | 16 | 1 | 46 | 4 | 1 | 1 | 37 | 2 | |||
犀科Rhinocerotidae | 6 | 1 | 16 | 1 | 3 | 1 | 15 | 1 | |||
鹿Cervus sp. | 2 | 1 | 25 | 3 | 0 | 0 | 11 | 1 | |||
瞪羚Gazella sp. | 0 | 0 | 7 | 3 | 0 | 0 | 3 | 1 | |||
牛科Bovidae | 0 | 0 | 11 | 1 | 3 | 1 | 7 | 1 | |||
大型食草类Large herbivores | 7 | 1 | 27 | 2 | 3 | 1 | 13 | 2 | |||
小计Sum | 32 | 5 | 143 | 17 | 13 | 6 | 97 | 13 | |||
其他Others * | 0 | 0 | 13 | 0 | 0 | 0 | 14 | 0 | |||
总计Total | 32 | 156 | 13 | 111 |
种属Species→ 骨骼部位Bone element↓ | 马Equus sp. | 犀科Rhinocerotidae | 鹿Cervus sp. | 牛Bovidae | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | ||||
下颌骨Mandibles | 0 | 0 | 0 | 0 | 100.0% | 62.5% | 0 | 0 | |||
颈椎Cervical vertebrae | 28.6% | 0 | 0 | 14.3% | 0 | 0 | 0 | 0 | |||
胸椎Thoracic vertebrae | 15.1% | 1.7% | 9.4% | 16.3% | 19.2% | 0 | 0 | 15.4% | |||
腰椎Lumbar vertebrae | 9.6% | 8.3% | 0 | 0 | 0 | 37.5% | 0 | 0 | |||
肋骨Ribs | 4.0% | 0 | 5.2% | 0 | 0 | 0 | 11.6% | 0 | |||
髋骨Innominates | 21.4% | 100.0% | 50.0% | 0 | 25.0% | 50.0% | 0 | 20.0% | |||
肱骨Humerus | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
股骨Femurs | 28.6% | 5.0% | 30.0% | 0 | 83.3% | 50.0% | 40.0% | 0 | |||
髌骨Patellas | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
尺桡骨Radius-Ulna | 0 | 25.0% | 100.0% | 50.0% | 66.7% | 100.0% | 60.0% | 40.0% | |||
胫骨Tibia | 71.4% | 35.0% | 50.0% | 41.7% | 50.0% | 60.0% | 30.0% | ||||
腓骨Fibula | 0 | 0 | 50.0% | 100.0% | 0 | 0 | 0 | 0 | |||
腕骨Carpals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
其他跗骨Other tarsals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 100.0% | |||
跟骨Calcaneus | 0 | 5.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
距骨Astragalus | 71.4% | 50.0% | 0 | 0 | 75.0% | 0 | 100.0% | 0 | |||
掌骨Metacarpals | 71.4% | 50.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
跖骨Metatarsals | 100.0% | 50.0% | 0 | 0 | 0 | 0 | 100.0% | 0 | |||
第一趾节骨Phalange I | 25.0% | 0 | 0 | 5.8% | 0 | 0 | 0 | 0 | |||
第二趾节骨Phalange II | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 25.0% | |||
第三趾节骨Phalange III | 35.7% | 0 | 0 | 8.3% | 0 | 0 | 0 | 0 |
表2 吉家庄遗址B、E地点出土马、犀、鹿与牛的骨骼单元分布
Tab.2 Bone element abundance (%MAU) of Equus sp., Rhinocerotidae, Cervus sp. and Bovidae from JJZ-B and JJZ-E
种属Species→ 骨骼部位Bone element↓ | 马Equus sp. | 犀科Rhinocerotidae | 鹿Cervus sp. | 牛Bovidae | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | ||||
下颌骨Mandibles | 0 | 0 | 0 | 0 | 100.0% | 62.5% | 0 | 0 | |||
颈椎Cervical vertebrae | 28.6% | 0 | 0 | 14.3% | 0 | 0 | 0 | 0 | |||
胸椎Thoracic vertebrae | 15.1% | 1.7% | 9.4% | 16.3% | 19.2% | 0 | 0 | 15.4% | |||
腰椎Lumbar vertebrae | 9.6% | 8.3% | 0 | 0 | 0 | 37.5% | 0 | 0 | |||
肋骨Ribs | 4.0% | 0 | 5.2% | 0 | 0 | 0 | 11.6% | 0 | |||
髋骨Innominates | 21.4% | 100.0% | 50.0% | 0 | 25.0% | 50.0% | 0 | 20.0% | |||
肱骨Humerus | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
股骨Femurs | 28.6% | 5.0% | 30.0% | 0 | 83.3% | 50.0% | 40.0% | 0 | |||
髌骨Patellas | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
尺桡骨Radius-Ulna | 0 | 25.0% | 100.0% | 50.0% | 66.7% | 100.0% | 60.0% | 40.0% | |||
胫骨Tibia | 71.4% | 35.0% | 50.0% | 41.7% | 50.0% | 60.0% | 30.0% | ||||
腓骨Fibula | 0 | 0 | 50.0% | 100.0% | 0 | 0 | 0 | 0 | |||
腕骨Carpals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
其他跗骨Other tarsals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 100.0% | |||
跟骨Calcaneus | 0 | 5.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
距骨Astragalus | 71.4% | 50.0% | 0 | 0 | 75.0% | 0 | 100.0% | 0 | |||
掌骨Metacarpals | 71.4% | 50.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
跖骨Metatarsals | 100.0% | 50.0% | 0 | 0 | 0 | 0 | 100.0% | 0 | |||
第一趾节骨Phalange I | 25.0% | 0 | 0 | 5.8% | 0 | 0 | 0 | 0 | |||
第二趾节骨Phalange II | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 25.0% | |||
第三趾节骨Phalange III | 35.7% | 0 | 0 | 8.3% | 0 | 0 | 0 | 0 |
种属Species→ 部位Element↓ | 鹿Cervus sp. | 马或牛Equus sp. or Bovidae | 犀Rhinocerotidae | 总计Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | ||||
颅骨Cranial bones | 0 | 0 | 14.3% | 0 | 0 | 12.5% | 14.3% | 12.5% | |||
下颌骨Mandibles | 33.3% | 0 | 0 | 0 | 0 | 33.3% | 16.7% | 16.7% | |||
颈椎Cervical vertebrae | 0 | 0 | 50% | 0 | 0 | 0 | 50% | 0 | |||
胸椎Thoracic vertebrae | 0 | 0 | 0 | 0 | 50% | 0 | 16.7% | 0 | |||
肋骨Ribs | 0 | 0 | 0 | 0 | 0 | 7.7% | 0 | 5.6% | |||
上部肢骨Upper limbs | 25% | 25% | 0 | 10% | 0 | 14.3% | 15.4% | 14.3% | |||
中部肢骨Middle limbs | 0 | 0 | 6.3% | 50% | 0 | 11.8% | 5.3% | 15.8% | |||
距骨Astragalus | 100% | 0 | 50% | 0 | 0 | 0 | 66.7% | 0 |
表3 吉家庄B地点出土骨骼上食肉咬痕与切割痕迹的分布
Tab.3 Frequency of carnivore gnaw marks and cut marks across bone elements from JJZ-B
种属Species→ 部位Element↓ | 鹿Cervus sp. | 马或牛Equus sp. or Bovidae | 犀Rhinocerotidae | 总计Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | ||||
颅骨Cranial bones | 0 | 0 | 14.3% | 0 | 0 | 12.5% | 14.3% | 12.5% | |||
下颌骨Mandibles | 33.3% | 0 | 0 | 0 | 0 | 33.3% | 16.7% | 16.7% | |||
颈椎Cervical vertebrae | 0 | 0 | 50% | 0 | 0 | 0 | 50% | 0 | |||
胸椎Thoracic vertebrae | 0 | 0 | 0 | 0 | 50% | 0 | 16.7% | 0 | |||
肋骨Ribs | 0 | 0 | 0 | 0 | 0 | 7.7% | 0 | 5.6% | |||
上部肢骨Upper limbs | 25% | 25% | 0 | 10% | 0 | 14.3% | 15.4% | 14.3% | |||
中部肢骨Middle limbs | 0 | 0 | 6.3% | 50% | 0 | 11.8% | 5.3% | 15.8% | |||
距骨Astragalus | 100% | 0 | 50% | 0 | 0 | 0 | 66.7% | 0 |
图3 吉家庄遗址B地点出土动物骨骼的表面痕迹 a.保留食肉动物咬痕与砍砸痕迹的颈椎a cervical vertebrate with carnivore tooth marks and percussion marks;b.图a方框内部砸击痕迹放大amplified percussion marks of figure 3a;c.保留切割痕迹的肋骨a rib with cutmarks;d.图c方框内部切割痕迹放大amplified cutmarks of figure 3c;e.保留食肉动物咬痕与切割痕迹的枕髁an occipital condyle with carnivore tooth marks overlying cutmarks;f. 图e方框内部痕迹放大amplified marks of figure 3e;g.图e方框内部痕迹放大amplified marks of figure 3e;h.保留有整体胃酸腐蚀痕迹以及食肉动物咬痕的距骨an astragalus with carnivore stomach acid corrosion and tooth pits
Fig.3 Bone surface modifications on animal bones from JJZ-B
[1] | 卫奇. 泥河湾盆地考证[J]. 文物春秋, 2016, 2: 3-11 |
[2] | 裴树文, 马东东, 贾真秀, 等. 蔚县盆地吉家庄旧石器遗址发掘报告[J]. 人类学学报, 2018, 37(4): 510-528 |
[3] | 马东东, 牛东伟, 裴树文, 等. 蔚县盆地2017-2018年旧石器考古调查简报[J]. 人类学学报, 2021, 40(1): 128-136 |
[4] | 牛东伟, 闫晓蒙, 马东东, 等. 蔚县盆地2019-2020年旧石器考古调查[J]. 人类学学报, 2022, 41(5): 936-944 |
[5] | 裴树文. 泥河湾盆地南部(蔚县盆地)发现一处重要古人类活动遗址群[J]. 人类学学报, 2017, 36(1): 26 |
[6] |
叶芷, 杜雨薇, 裴树文, 等. 蔚县盆地吉家庄旧石器遗址的形成过程[J]. 人类学学报, 2022, 41(e), doi: 10.16359/j.1000-3193/AAS.2022.0052
doi: 10.16359/j.1000-3193/AAS.2022.0052 URL |
[7] | Lyman RL. Vertebrate taphonomy[M]. Cambridge University Press, 1994 |
[8] | 伊丽莎白·施密德. 动物骨骼图谱[M].译者:李天元. 北京: 中国地质大学出版社,1992 |
[9] | Binford LR. Faunal Remains from Klasies River Mouth[M]. Orlando, FL: Academic Press, 1984 |
[10] | 张乐, Norton CJ, 张双权, 等. 量化单元在马鞍山遗址动物骨骼研究中的运用[J]. 人类学学报, 2008, 27(1): 80-90 |
[11] |
Domínguez-Rodrigo M. Hunting and Scavenging by Early Humans: The State of the Debate[J]. Journal of World Prehistory, 2002, 16(1): 1-54
doi: 10.1023/A:1014507129795 URL |
[12] |
Domínguez-Rodrigo M. Meat-Eating by Early Hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): an experimental approach using cut-mark data[J]. Journal of Human Evolution, 1997, 33: 669-690
pmid: 9467775 |
[13] | Fernandez-Jalvo Y, Andrews P. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification[M]. Dordrecht: Springer, 2016 |
[14] | Domínguez-Rodrigo M, Egeland CP, Barba R. Domínguez-Rodrigo M, Barba R, Egeland CP (The “physical attribute” taphonomic approach[A]. In: Eds.).Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites[C]. Dordrecht: Springer, 2007, 23-32 |
[15] |
Potts R, Shipman P. Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania[J]. Nature, 1981, 291: 577-580
doi: 10.1038/291577a0 |
[16] |
Bunn H. Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge[J]. Nature, 1981, 291: 574-577
doi: 10.1038/291574a0 |
[17] |
Behrensmeyer AK. Taphonomic and ecologic information from bone weathering[J]. Paleobiology, 1978, 4(2): 150-162
doi: 10.1017/S0094837300005820 URL |
[18] |
Fisher JW. Bone surface modifications in zooarchaeology[J]. Journal of Archaeological method and theory, 1995, 2(1): 7-68
doi: 10.1007/BF02228434 URL |
[19] |
Smith GM, Spasov R, Martisius NL, et al. Subsistence behavior during the initial Upper Paleolithic in Europe: site use, dietary practice, and carnivore exploitation at Bacho Kiro Cave (Bulgaria)[J]. Journal of Human Evolution, 2021, 161: 103074
doi: 10.1016/j.jhevol.2021.103074 URL |
[20] |
Domı́nguez-Rodrigo M, Piqueras A. The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours[J]. Journal of Archaeological Science. 2003, 30:1385-1391
doi: 10.1016/S0305-4403(03)00027-X URL |
[21] |
Blumenschine RJ, Marean CW, Capaldo SD. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces[J]. Journal of Archaeological Science, 1996, 23: 493-507
doi: 10.1006/jasc.1996.0047 URL |
[22] |
Vettese D, Blasco R, Cáceres I, et al. Towards an understanding of hominin marrow extraction strategies: a proposal for a percussion mark terminology[J]. Archaeological and Anthropological Sciences, 2020, 12: 48
doi: 10.1007/s12520-019-00972-8 |
[23] |
Capaldo SD, Blumenschine RJ. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones[J]. American Antiquity, 1994, 59(4): 724-748
doi: 10.2307/282345 URL |
[24] |
Johnson EV, Parmenter PCR, Outram AK. A new approach to profiling taphonomic history through bone fracture analysis, with an example application to the Linearbandkeramik site of Ludwinowo 7[J]. Journal of Archaeological Science: Reports, 2016, 9: 623-629
doi: 10.1016/j.jasrep.2016.08.047 URL |
[25] | Johnson E. Schiffer MB (Current developments in bone technology[A]. In: Eds.). Advances in Archaeological Method and Theory (Volume 8)[C]. Orlando: Academic Press, 1985, 157-235 |
[26] |
Outram AK. A new approach to identifying bone marrow and grease exploitation: why the “indeterminate” fragments should not be ignored[J]. Journal of Archaeological Science, 2001, 28: 401-410
doi: 10.1006/jasc.2000.0619 URL |
[27] | Binford LR. Nunamiut Ethnoarchaeology[M]. New York: Academic Press, 1978 |
[28] |
Villa P, Mahieu E. Breakage patterns of human long bones[J]. Journal of Human Evolution, 1991, 21: 27-48
doi: 10.1016/0047-2484(91)90034-S URL |
[29] |
Lam YM, Chen XB, Pearson OM. Intertaxonomic Variability in Patterns of Bone Density and the differential representation of Bovid, Cervid, and Equid elements in the archaeological record[J]. American Antiquity, 1999, 64(2): 343-362
doi: 10.2307/2694283 URL |
[30] |
Kreutzer LA. Bison and Deer Bone Mineral Densities: comparisons and implications for the interpretation of archaeological faunas[J]. Journal of Archaeological Science, 1992, 19: 271-294
doi: 10.1016/0305-4403(92)90017-W URL |
[31] |
Blumenschine RJ. An Experimental Model of the Timing of Hominid and Carnivore Influence on Archaeological Bone Assemblages[J]. Journal of Archaeological Science, 1988, 15: 483-502
doi: 10.1016/0305-4403(88)90078-7 URL |
[32] | 张双权. 河南许昌灵井动物群的埋藏学研究[D]. 北京: 中国科学院大学, 2009 |
[33] | Brain CK. The Hunters or the Hunted? An Introduction to African Cave Taphonomy[M]. Chicago: University of Chicago Press, 1981 |
[34] | Bunn HT, Kroll EM. Systematic Butchery by Plio/Pleistocene Hominids at Olduvai Gorge, Tanzania[J]. Current Anthropology, 1986, 627(5): 431-452 |
[35] | Fairnell E. 101 ways to skin a fur-bearing animal: the implications for zooarchaeological interpretation[A]. In: Cunningham P, Heeb J, Paardekooper R (Eds.). Experiencing archaeology by experiment [C]. Oxbow: Oxford, 2008, 47-60 |
[36] |
Selvaggio MM. Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications[J]. Journal of Human Evolution, 1994, 27: 215-228
doi: 10.1006/jhev.1994.1043 URL |
[37] |
Capaldo SD. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania[J]. Journal of Human Evolution, 1997, 33: 555-597
pmid: 9403079 |
[38] | Domínguez-Rodrigo M, Barba R. The behavioral meaning of cut marks at the FLK Zinj level: the carnivore-hominid-carnivore hypothesis falsified (II)[A]. In: Domínguez-Rodrigo M, Barba R, Egeland CP (Eds.). Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites[C]. Dordrecht: Springer, 2007, 75-100 |
[39] |
Lupo KD, O’Connell JF. Cut and tooth mark distributions on large animal bones: ethnoarchaeological data from the Hadza and their implications for current ideas about early human carnivory[J]. Journal of Archaeological Science, 2002, 29:85-109
doi: 10.1006/jasc.2001.0690 URL |
[40] |
Pickering TR, Domínguez-Rodrigo M, Heaton JL, et al. Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania[J]. Journal of Archaeological Science, 2013, 40: 1295-1309
doi: 10.1016/j.jas.2012.09.025 URL |
[41] |
Blumenschine RJ. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania[J]. Journal of Human Evolution, 1995, 29: 21-51
doi: 10.1006/jhev.1995.1046 URL |
[42] | 张双权, 彭菲, 张乐, 等. 宁夏鸽子山遗址第10地点出土动物骨骼的埋藏学初步观察[J]. 人类学学报, 2019, 38(2): 232-244 |
[43] |
Pickering TR, Egeland CP. Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans[J]. Journal of Archaeological Sciences, 2006, 33: 459-469
doi: 10.1016/j.jas.2005.09.001 URL |
[44] | Starkovich BM, Conard NJ. What were they up against? Lower Paleolithic hominin meat acquisition and competition with Plio-Pleistocene carnivores[A]. In: García-Moreno A, Hutson JM, Smith GM, et al (Eds.). Human behavioral adaptations to interglacial lakeshore environments[C]. Mainz and Heidelberg: RGZM-Tagungen, 2020, 105-130 |
[1] | 范文田, 杨晓冬. 泥河湾盆地南山根地点发掘简报[J]. 人类学学报, 2023, 42(02): 260-271. |
[2] | 别婧婧, 夏楠, 王社江, 弋双文, 鹿化煜, 夏文婷, 张改课, 李葭萌. 陕西洋县绿豆梁旧石器遗址出土的石制品[J]. 人类学学报, 2023, 42(01): 15-24. |
[3] | 叶芷, 杜雨薇, 裴树文, 丁馨, 徐哲, 马东东. 蔚县盆地吉家庄旧石器遗址的形成过程[J]. 人类学学报, 2023, 42(01): 46-60. |
[4] | 张月书, 李锋, 陈福友, 仪明洁, 高星. 泥河湾盆地东谷坨遗址6A2层的形成过程[J]. 人类学学报, 2023, 42(01): 61-74. |
[5] | 王晓敏, 王法岗, 陈福友, 李锋, 高星. 泥河湾盆地板井子晚更新世遗址古人类对动物资源的消费策略[J]. 人类学学报, 2022, 41(06): 1005-1016. |
[6] | 仪明洁, 裴树文, 牛东伟, 马宁. 丹江口库区王庄、吴家外和岳沟地点发现的石制品[J]. 人类学学报, 2022, 41(06): 959-966. |
[7] | 战世佳, 董哲, 弋双文, 张红艳, 李浩, 裴树文. 安徽巢湖地区2019年旧石器考古调查的新发现[J]. 人类学学报, 2022, 41(05): 927-935. |
[8] | 牛东伟, 闫晓蒙, 马东东, 徐哲, 裴树文. 蔚县盆地2019-2020年旧石器考古调查[J]. 人类学学报, 2022, 41(05): 936-944. |
[9] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石的形态多样性及其演化意义[J]. 人类学学报, 2022, 41(04): 563-575. |
[10] | 裴树文, 蔡演军, 董哲, 同号文, 盛锦朝, 金泽田, 吴秀杰, 刘武. 安徽东至华龙洞遗址洞穴演化与古人类活动[J]. 人类学学报, 2022, 41(04): 593-607. |
[11] | 杜雨薇, 丁馨, 裴树文. 浅议古人类活动遗址的动物埋藏学研究方法[J]. 人类学学报, 2022, 41(03): 523-534. |
[12] | 董哲, 战世佳. 安徽省宁国市安友庄旧石器遗址调查及发掘简报[J]. 人类学学报, 2022, 41(02): 334-341. |
[13] | 任进成, 王法岗, 李锋, 杨庆江, 陈福友, 高星. 泥河湾盆地板井子旧石器时代遗址的形成过程[J]. 人类学学报, 2021, 40(03): 378-392. |
[14] | 陆莹, 孙雪峰, 王社江, 鹿化煜. 早、中更新世中国古人类年代序列与区域演化特征[J]. 人类学学报, 2021, 40(03): 411-426. |
[15] | 姬昊, 刘春茹, 宋为娟, 魏传义, 敖红, 李建平, 尹功明. 泥河湾盆地三棵树遗址ESR年代学[J]. 人类学学报, 2021, 40(03): 427-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||