人类学学报 ›› 2024, Vol. 43 ›› Issue (03): 427-439.doi: 10.16359/j.1000-3193/AAS.2023.0043
收稿日期:
2023-04-26
修回日期:
2023-07-23
出版日期:
2024-06-15
发布日期:
2024-06-04
通讯作者:
张忠良,教授,主要从事手印学研究。E-mail: zzl6410282159@qq.com
作者简介:
赵瑞敏,硕士研究生,主要从事手印显现、分析及检验鉴定工作。E-mail:1320510260@qq.com
基金资助:
ZHAO Ruimin(), LIU Kai, SUN Peng, ZHANG Zhongliang()
Received:
2023-04-26
Revised:
2023-07-23
Online:
2024-06-15
Published:
2024-06-04
摘要:
利用指纹特征分析人的性别及年龄,一直是法医学和人类学领域的挑战性项目。现有研究因统计样本量少、特征利用率低、模型学习能力低等不足,导致利用指纹特征分析性别及年龄的准确率低。本文从多种分类及回归机器学习模型比对分析的角度,对2980份拇指及食指指纹捺印样本(男性1500份,女性1480份)的指纹特征进行统计测量,并在拇指及食指不同指纹特征相互组合的情况下,观察各机器学习模型的性别分类、年龄回归的准确率。结果表明,同时使用拇指及食指指纹特征进行学习的性别分类、年龄回归的准确率高于使用单一手指指纹特征的准确率。其中,使用指纹特征对性别进行分类的结果中,F1衡量指标值最高为0.979;对男性指纹样本进行年龄回归的结果中最高准确率为86.7%,女性指纹样本年龄回归的最高准确率为85.3%,证明使用拇指及食指指纹特征综合进行学习,可提高性别分类及年龄回归准确率思路的有效性。
中图分类号:
赵瑞敏, 刘凯, 孙鹏, 张忠良. 基于拇指与食指指纹组合特征分析人的性别及年龄[J]. 人类学学报, 2024, 43(03): 427-439.
ZHAO Ruimin, LIU Kai, SUN Peng, ZHANG Zhongliang. Using fingerprint characteristics of a person’s thumb and forefinger to analyze his gender and age[J]. Acta Anthropologica Sinica, 2024, 43(03): 427-439.
图2 同一男性不同年龄阶段的指纹变化 A-F表示不同男性的指纹 A-F indicates different male fingerprints;下标1、2表示拇指指纹 subscript 1, 2 indicates thumb fingerprints;下标3、4表示食指指纹 subscript 3, 4 indicates forefinger fingerprints
Fig.2 Comparison of fingerprint changes in the same person at different ages
图4 男性和女性的拇指和食指指纹特征随年龄变化规律图 (a)-(i). 分别对应男性和女性的拇指和食指的dr、br、bv、nh、nv、L、ni、nf和P随年龄变化的模式,图中的每个特征值都是在每个年龄段测量的数据的中值,MT、FT、MF、FF 分别表示男性拇指、女性拇指、男性食指和女性食指
Fig.4 Patterns of thumb and forefinger fingerprint features with age in males and females correspond to the pattern of changes in dr, br, bv, nh, nv, L, ni, nf and P with age in the thumb and forefinger for males and females,and each feature value in the figure shows the median value of the data measured at each age, MT, FT, MF, FF stand for male thumb, female thumb, male index finger, and female index finger
方法Method→ 分组groups↓ | RAF | ADB | CTB | EXT | KNN | BPN | SVM | XGB | LGB | BYS |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.949 | 0.951 | 0.954 | 0.941 | 0.938 | 0.907 | 0.550 | 0.942 | 0.948 | 0.910 |
2 | 0.951 | 0.954 | 0.956 | 0.950 | 0.946 | 0.909 | 0.583 | 0.949 | 0.955 | 0.901 |
3 | 0.956 | 0.955 | 0.955 | 0.949 | 0.944 | 0.911 | 0.648 | 0.950 | 0.961 | 0.915 |
4 | 0.958 | 0.954 | 0.957 | 0.956 | 0.949 | 0.924 | 0.642 | 0.957 | 0.959 | 0.912 |
5 | 0.958 | 0.954 | 0.962 | 0.955 | 0.953 | 0.923 | 0.557 | 0.953 | 0.964 | 0.921 |
6 | 0.963 | 0.960 | 0.962 | 0.957 | 0.951 | 0.928 | 0.751 | 0.961 | 0.964 | 0.914 |
7 | 0.959 | 0.963 | 0.966 | 0.964 | 0.957 | 0.929 | 0.547 | 0.961 | 0.966 | 0.930 |
8 | 0.964 | 0.959 | 0.971 | 0.964 | 0.953 | 0.925 | 0.710 | 0.962 | 0.967 | 0.916 |
9 | 0.975 | 0.967 | 0.971 | 0.963 | 0.954 | 0.929 | 0.706 | 0.957 | 0.973 | 0.924 |
表1 不同特征组合在10种分类方法下的F1分数
Tab.1 F1 scores of different feature combinations based on 10 classification methods
方法Method→ 分组groups↓ | RAF | ADB | CTB | EXT | KNN | BPN | SVM | XGB | LGB | BYS |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.949 | 0.951 | 0.954 | 0.941 | 0.938 | 0.907 | 0.550 | 0.942 | 0.948 | 0.910 |
2 | 0.951 | 0.954 | 0.956 | 0.950 | 0.946 | 0.909 | 0.583 | 0.949 | 0.955 | 0.901 |
3 | 0.956 | 0.955 | 0.955 | 0.949 | 0.944 | 0.911 | 0.648 | 0.950 | 0.961 | 0.915 |
4 | 0.958 | 0.954 | 0.957 | 0.956 | 0.949 | 0.924 | 0.642 | 0.957 | 0.959 | 0.912 |
5 | 0.958 | 0.954 | 0.962 | 0.955 | 0.953 | 0.923 | 0.557 | 0.953 | 0.964 | 0.921 |
6 | 0.963 | 0.960 | 0.962 | 0.957 | 0.951 | 0.928 | 0.751 | 0.961 | 0.964 | 0.914 |
7 | 0.959 | 0.963 | 0.966 | 0.964 | 0.957 | 0.929 | 0.547 | 0.961 | 0.966 | 0.930 |
8 | 0.964 | 0.959 | 0.971 | 0.964 | 0.953 | 0.925 | 0.710 | 0.962 | 0.967 | 0.916 |
9 | 0.975 | 0.967 | 0.971 | 0.963 | 0.954 | 0.929 | 0.706 | 0.957 | 0.973 | 0.924 |
特征Feature→ 方法 Method↓ | 拇指Thumb | 食指Forefinger | 拇指食指组合特征Thumb & Forefinger |
---|---|---|---|
RAF | 0.975 | 0.966 | 0.979 |
ADB | 0.967 | 0.963 | 0.969 |
CTB | 0.971 | 0.963 | 0.973 |
EXT | 0.963 | 0.951 | 0.967 |
KNN | 0.954 | 0.938 | 0.962 |
BPN | 0.939 | 0.921 | 0.941 |
SVM | 0.716 | 0.679 | 0.712 |
XGB | 0.957 | 0.934 | 0.965 |
LGB | 0.973 | 0.956 | 0.954 |
BYS | 0.914 | 0.905 | 0.938 |
表2 3类特征在10种分类方法下的F1分数
Tab.2 F1 scores of 3 types of features under 10 classification methods
特征Feature→ 方法 Method↓ | 拇指Thumb | 食指Forefinger | 拇指食指组合特征Thumb & Forefinger |
---|---|---|---|
RAF | 0.975 | 0.966 | 0.979 |
ADB | 0.967 | 0.963 | 0.969 |
CTB | 0.971 | 0.963 | 0.973 |
EXT | 0.963 | 0.951 | 0.967 |
KNN | 0.954 | 0.938 | 0.962 |
BPN | 0.939 | 0.921 | 0.941 |
SVM | 0.716 | 0.679 | 0.712 |
XGB | 0.957 | 0.934 | 0.965 |
LGB | 0.973 | 0.956 | 0.954 |
BYS | 0.914 | 0.905 | 0.938 |
图5 性别分类可视化分析 A.男性指纹 Male fingerprints; B.被误分类至女性指纹的男性指纹 Male fingerprints that were misclassified as female fingerprints; C. 女性指纹 Female fingerprints
Fig.5 Visual analysis of gender classification
图6 RAF方法参数调优图 A-F. RAF方法在A到F的6个特征组合中随着参数的变化而产生的回归精度
Fig.6 RAF method parameter tuning diagram the regression accuracy of the RAF method with the variation of parameters for 6 combinations of features from A to F
特征Feature→ | 男性Male | 女性Female | |||||
---|---|---|---|---|---|---|---|
方法Method↓ | 拇指Thumb | 食指Forefinger | 拇指食指组合特征Thumb& Forefinger | 拇指Thumb | 食指Forefinger | 拇指食指组合特征Thumb& Forefinger | |
RAF | 75.8% | 72.1% | 82.9% | 78.5% | 73.6% | 84.5% | |
ADB | 75.2% | 72.3% | 86.7% | 77.1% | 74.5% | 85.3% | |
EXT | 74.6% | 71.1% | 85.3% | 77.8% | 72.4% | 81.3% | |
CTB | 71.3% | 69.2% | 81.6% | 75.7% | 70.9% | 81.1% | |
KNN | 67.8% | 65.5% | 72.1% | 73.2% | 68.3% | 78.9% | |
SVR | 59.6% | 53.7% | 68.4% | 73.4% | 70.6% | 80.8% | |
LGB | 73.2% | 72.0% | 84.2% | 75.6% | 71.4% | 81.2% | |
MLR | 68.5% | 67.3% | 75.2% | 71.3% | 69.3% | 80.5% |
表3 在有无性别分类的情况下分别使用RAF得到的年龄回归准确率
Tab. 3 Accuracy of RAF age regression without gender classification and after gender classification
特征Feature→ | 男性Male | 女性Female | |||||
---|---|---|---|---|---|---|---|
方法Method↓ | 拇指Thumb | 食指Forefinger | 拇指食指组合特征Thumb& Forefinger | 拇指Thumb | 食指Forefinger | 拇指食指组合特征Thumb& Forefinger | |
RAF | 75.8% | 72.1% | 82.9% | 78.5% | 73.6% | 84.5% | |
ADB | 75.2% | 72.3% | 86.7% | 77.1% | 74.5% | 85.3% | |
EXT | 74.6% | 71.1% | 85.3% | 77.8% | 72.4% | 81.3% | |
CTB | 71.3% | 69.2% | 81.6% | 75.7% | 70.9% | 81.1% | |
KNN | 67.8% | 65.5% | 72.1% | 73.2% | 68.3% | 78.9% | |
SVR | 59.6% | 53.7% | 68.4% | 73.4% | 70.6% | 80.8% | |
LGB | 73.2% | 72.0% | 84.2% | 75.6% | 71.4% | 81.2% | |
MLR | 68.5% | 67.3% | 75.2% | 71.3% | 69.3% | 80.5% |
[1] | Champod C, Lennard CJ, Margot P, et al. Fingerprints and other ridge skin impressions[M]. La Paz: CRC Press, 2004 |
[2] |
Monson KL, Roberts MA, Knorr KB, et al. The permanence of friction ridge skin and persistence of friction ridge skin and impressions: A comprehensive review and new results[J]. Forensic science international, 2019, 297: 111-131
doi: S0379-0738(19)30039-8 pmid: 30784948 |
[3] | Gorka M, Thomas A, Bécue A. Chemical composition of the fingermark residue: Assessment of the intravariability over one year using MALDI-MSI[J]. Forensic Science International, 2022, 338: 111380 |
[4] |
Mundorff AZ, Bartelink EJ, Murad TA. Sexual dimorphism in finger ridge breadth measurements: a tool for sex estimation from fingerprints[J]. Journal of forensic sciences, 2014, 59(4): 891-897
doi: 10.1111/1556-4029.12449 pmid: 24673752 |
[5] |
Nayak VC, Rastogi P, Kanchan T, et al. Sex differences from fingerprint ridge density in Chinese and Malaysian population[J]. Forensic science international, 2010, 197(1-3): 67-69
doi: 10.1016/j.forsciint.2009.12.055 pmid: 20071110 |
[6] | Sánchez-andrés A, Barea JA, Rivaldería N, et al. Impact of aging on fingerprint ridge density: Anthropometry and forensic implications in sex inference[J]. Science & justice, 2018, 58(5): 323-334 |
[7] |
Kanchan T, Krishan K. Anthropometry of hand in sex determination of dismembered remains-A review of literature[J]. Journal of Forensic and Legal Medicine, 2011, 18(1): 14-17
doi: 10.1016/j.jflm.2010.11.013 pmid: 21216373 |
[8] | Ceyhan EB, Saĝiroĝlu Ş, Tatoĝlu S, et al. Age estimation from fingerprints. Examination of the population in Turkey[A]. In: Wani M(Ed.). proceedings of the 2014 13th International Conference on Machine Learning and Applications[C]. Detroit: IEEE, 2014, 478-481 |
[9] | 宋焕庭, 唐玮, 张丽梅, 等. 指纹与年龄相关性的量化分析[J]. 人类学学报, 2022, 41(6): 1047-1057 |
[10] | Falohun A, Fenwa O, Ajala F. A fingerprint-based age and gender detector system using fingerprint pattern analysis[J]. International Journal of Computer Applications, 2016, 136(4): 0975-8887 |
[11] | Jayakala G, Sudha L. Fingerprint analysis for age estimation using deep learning models (ResNet50 and VGG-16)[J]. International Journal of Health Sciences, 2022, 6(S3): 6781-6789 |
[12] | Rivaldería N, Gutiérrez-Redomero E. Interpopulational differences in the frequency and distribution of delta types[J]. Forensic Science International, 2021, 322: 110749 |
[13] |
Dao JRH, Kazin RA. Gender differences in skin: a review of the literature[J]. Gender medicine, 2007, 4(4): 308-328
doi: 10.1016/s1550-8579(07)80061-1 pmid: 18215723 |
[14] |
Farage MA, Miller KW, Elsner P, et al. Characteristics of the aging skin[J]. Advances in wound care, 2013, 2(1): 5-10
doi: 10.1089/wound.2011.0356 pmid: 24527317 |
[15] | Da Silva Carvalho D, De Alecrim MMV, De Sousa Júnior R T, et al. Outcome of sex determination from ulnar and radial ridge densities of Brazilians' fingerprints: applying an existing method to a new population[J]. Science & Justice, 2022, 62(2): 181-192 |
[16] | Goutte C, Gaussier E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation[A]. In: Losada (Ed.). Advances in Information Retrieval. ECIR 2005. Lecture Notes in Computer Science[C]. Heidelberg: Springer, 2005:345-359 |
[17] | Patil A, Singh S. Prakash C(Ed.). Differential private random forest[A]. In: Prakash C(Ed.). proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI)[C]. Delhi: IEEE, 2014, 2623-2630 |
[18] | Schapire RE. Explaining adaboost[J]. Empirical Inference: Festschrift in Honor of Vladimir N Vapnik, 2013, 37-52 |
[19] | Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[J]. Advances in neural information processing systems, 2018, doi:10.48550/arXiv.1706.09516 |
[20] | Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Machine learning, 2006, 63: 3-42 |
[21] | Peterson LE. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883 |
[22] | Buscema M. Back propagation neural networks[J]. Substance use & misuse, 1998, 33(2): 233-270 |
[23] | Hearst MA, Dumais ST, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and their applications, 1998, 13(4): 18-28 |
[24] | Chen T, Guestrin C. Xgboost: A scalable tree boosting system[J]. ACM, 2016. doi:10.1145/2939672.2939785 |
[25] | Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree[A]. In: Von Luxburg U(Ed.). Advances in neural information processing systems 30 (niP2017)[C]. Long Beach: Neural Information Processing Systems Foundation, 2017 |
[26] | Rish I. An empirical study of the naive Bayes classifier[J]. Journal of Universal Computer Science, 2001, 1(2): 127 |
[27] | Smola AJ, Schölkopf B. A tutorial on support vector regression[J]. Statistics and computing, 2004, 14: 199-222 |
[28] | Eberly LE. Multiple linear regression[J]. Topics in Biostatistics, 2007, 165-187 |
[29] | 陆宏, 霍正浩, 钟慧军, 等. 宁夏回、汉族指纹白线的研究[J]. 人类学学报, 2005, 24(1): 77-81 |
[1] | 曾浩然, 刘康康, 罗亚平. 指纹皱纹研究的现状及展望[J]. 人类学学报, 2024, 43(03): 518-528. |
[2] | 张宝帅, 吴晓桐, 吴高, 金正耀, 范安川. 釉原蛋白微损分析方法鉴定人骨性别的有效性与优化[J]. 人类学学报, 2023, 42(04): 472-487. |
[3] | 杜抱朴, 殷钰喆, 谭伊, 张宇格, 范博, 姚植正, 郭航. 中国现代人群两性身高差异分布及其影响因素[J]. 人类学学报, 2023, 42(02): 191-200. |
[4] | 赵永生, 孙田璐, 杨张翘楚, 王子孟, 刘文涛, 曾雯. 山东古代居民骨化甲状软骨的观测[J]. 人类学学报, 2023, 42(02): 214-224. |
[5] | 李楠, 孙战伟, 赵艺蓬, 何嘉宁, 凌亮优, 成芷菡, 冉智宇. 年龄鉴定的转换分析法及其在月家庄墓地人骨中的应用[J]. 人类学学报, 2023, 42(01): 75-86. |
[6] | 宋焕庭, 唐玮, 张丽梅, 张忠良, 张嘉宇, 陈世韬. 指纹与年龄相关性的量化分析[J]. 人类学学报, 2022, 41(06): 1047-1057. |
[7] | 李咏兰, 郑连斌. 中国人群的体部指数[J]. 人类学学报, 2022, 41(05): 848-861. |
[8] | 张家富. 旧石器和古人类遗址释光测年技术的可靠性和测年上限[J]. 人类学学报, 2022, 41(04): 712-730. |
[9] | 侯侃. 过渡分析在先秦时期人骨年龄估计中的应用[J]. 人类学学报, 2022, 41(03): 439-449. |
[10] | 李咏兰, 张兴华, 孙泽阳, 宇克莉, 包金萍, 郑连斌. 中国人的头面部形态特征[J]. 人类学学报, 2022, 41(03): 450-462. |
[11] | 张全超, 孙语泽, 侯亮亮, 吉平, 朱永刚. 哈民忙哈遗址人和动物骨骼的C、N稳定同位素分析[J]. 人类学学报, 2022, 41(02): 261-273. |
[12] | 乌云达来, 郑连斌, 李咏兰. 中国蒙古族的身高特征[J]. 人类学学报, 2022, 41(02): 282-294. |
[13] | 梁芝栋. 体育专业大学生指长比及其波动性不对称的特征[J]. 人类学学报, 2022, 41(01): 57-64. |
[14] | 熊建雪, 陈国科, 殷杏, 蒙海亮, 杨谊时, 陶驿辰, 谭婧泽, 李辉, 文少卿. 黑水国遗址汉代人群的上颌窦炎症[J]. 人类学学报, 2021, 40(05): 776-786. |
[15] | 德力格尔, 乌云格日勒. 内蒙古汉族、蒙古族与日本学生身高和体质量的最大发育年龄段差异[J]. 人类学学报, 2021, 40(05): 847-856. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||