[1] |
Rasmussen P. Analysis of goat sheep feces from egolzwil-3, switzerland-evidence for branch and twig foddering of livestock in the neolithic[J]. Journal of archaeological science, 1993, 20:479-502
doi: 10.1006/jasc.1993.1030
URL
|
[2] |
Harrison T. Paleontology and Geology of Laetoli: Human Evolution in Context[M]. Springer Dordrecht Heidelberg London New York, 2011: 279-292
|
[3] |
Wood JR, Wilmshurst JM, Wagstaff SJ, et al. High-resolution coproecology: Using coprolites to reconstruct the habits and habitats of New Zealand’s extinct upland moa (Megalapteryx didinus)[J]. PloS ONE, 2012, doi: 10.1371/journal.pone.0040025
doi: 10.1371/journal.pone.0040025
|
[4] |
Gil-Romera G, Neumann FH, Scott L, et al. Pollen taphonomy from hyaena scats and coprolites: preservation and quantitative differences[J]. Journal of Archaeological Science, 2014, 46:89-95
doi: 10.1016/j.jas.2014.02.027
URL
|
[5] |
王文娟, 吴妍, 宋国定, 等. 灵井许昌人遗址鬣狗粪化石的孢粉和真菌孢子研究[J]. 科学通报, 2013, 58:51-56
|
[6] |
Geel BV, Buurman J, Brinkkemper O, et al. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi[J]. Journal of Archaeological Science. 2003, 7:873-883
|
[7] |
Scott L. Pollen analysis of hyena coprolites and sediments from Equus Cave, Taung, southern Kalahari (South Africa)[J]. Quaternary Research, 1987, 28:144-156
doi: 10.1016/0033-5894(87)90039-1
URL
|
[8] |
Carrión JS, Riquelme JA, Navarro C. Pollen in hyaena coprolites reflects late glacial landscape in southern Spain[J]. Palaeogeography Palaeoclimatology Palaeoecology. 2001, 176:0-205
|
[9] |
López-Sáez JA, López-Merino L. Coprophilous fungi as a source of information of anthropic activities during the Prehistory in the Amblés Valley(Ávila, Spain): The archaeopalynological record[J]. Revista Espanola de Micropaleontologia, 2007, 39(1-2):103-116
|
[10] |
Ejarque A, Miras Y, Riera S. Pollen and non-pollen palynomorph indicators of vegetation and highland grazing activities obtained from modern surface and dung datasets in the eastern Pyrenees[J]. Review of Palaeobotany and Palynology, 2011, 167:123-139
doi: 10.1016/j.revpalbo.2011.08.001
URL
|
[11] |
Graves SS, Burner AW, Edwards JW, et al. Dynamic Deformation Measurements of an Aeroelastic Semispan Model[J]. Journal of Aircraft, 2003, 40:977-984
doi: 10.2514/2.6883
URL
|
[12] |
Zhang YN, Geel BV, Gosling WD, et al. Local vegetation patterns of a Neolithic environment at the site of Tianluoshan, China, based on coprolite analysis[J]. Review of Palaeobotany and Palynology, 2019, 271
|
[13] |
Mazier F, Galop D, Gaillard MJ, et al. Multidisciplinary approach to reconstructing local pastoral activities: An example from the Pyrenean Mountains (Pays Basque)[J]. The Holocene, 2009, 19:171-188
doi: 10.1177/0959683608098956
URL
|
[14] |
Cugny C, Mazier F, Galop D. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity[J]. Vegetation History and Archaeobotany, 2010, 19:391-408
|
[15] |
刘炳仑. 粪便孢粉学[J]. 化石, 1993(4):26-26
|
[16] |
吴玉书, 于浅黎. 粪化石中的孢粉[J]. 化石, 1981(3):19-20
|
[17] |
杜乃秋, 于浅黎. 周口店鬣狗(Hyaena)粪化石的孢粉分析[J]. 古脊椎动物学报, 1980 (3):83
|
[18] |
郝瑞辉, 萧家仪, 房迎, 等. 南京汤山驼子洞鬣狗粪化石的孢粉分析[J]. 古生物学, 2008, 47(1):123-138
|
[19] |
郝秀东, 翁成郁. 粪生真菌孢子在古生态学研究中的指示意义[J]. 海洋地质与第四纪地质, 2015, 35(1):175-184
|
[20] |
Wei HC, Hou GL, Fan QS, et al. Using coprophilous fungi to reconstruct the history of pastoralism in the Qinghai Lake Basin, Northeastern Qinghai-Tibetan Plateau[J]. Progress in Physical Geography: Earth and Environment, 2019, 44(1):030913331986959
|
[21] |
Huang XZ, Zhang J, Storozum M, et al. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts[J]. Review of Palaeobotany and Palynology, 2020, 275:104171
doi: 10.1016/j.revpalbo.2020.104171
URL
|
[22] |
Moore PD, Webb JA. An illustrated Guide to pollen analysis[M]. New York: Wiley, 1978: 1-133
|
[23] |
李小强, 杜乃秋. 第四纪花粉的无酸碱分析法[J]. 植物学报, 1999, 41(7):782-784
|
[24] |
唐领余, 毛礼米, 舒军武. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016: 1-602
|
[25] |
王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态(第二版)[M]. 北京: 科学出版社, 1997, 1-461
|
[26] |
席以珍, 宁建长. 中国干旱半干旱地区花粉形态研究[J]. 玉山生物学报, 1994, 11:119-191
|
[27] |
Taylor, Thomas N. Fossil Fungi[M]. New York: Academic Press, 1988
|
[28] |
Andr A, Geel BV . Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples[J]. Review of Palaeobotany & Palynology, 2006, 141:225-230
|
[29] |
Grimm EC. Tilia and Tilia. GRAPH. PC spread sheet and graphics software for pollen data. INQUA, Working Group in Data Handling methods[J]. Newsletter, 1990(4):5-7
|
[30] |
Grimm EC. Tilia version 2.0[CP/OL]. Illinois State Museum, Research and Collections Center, 1991-1993. URL: https://www.tiliait.com/download/
|
[31] |
Carrión JS. A taphonomic study of modern pollen assemblages from dung and surface sediments in arid environments of Spain[J]. Review of Palaeobotany and Palynology, 2002, 120:217-232
doi: 10.1016/S0034-6667(02)00073-8
URL
|
[32] |
张新时. 中国植被及其地理格局(2)[M]. 北京: 地质出版社, 2007
|
[33] |
许清海, 李月丛, 阳小兰, 等. 北方草原区主要群落类型表土花粉分析[J]. 地理研究, 2005(3):394-402
|
[34] |
邵孔兰, 张健平, 丛德新, 等. 植物微体化石分析揭示阿敦乔鲁遗址古人生存策略[J]. 第四纪研究, 2019, 39(1):37-47
|
[35] |
Caretta G, Piontelli E, Savino E. Some coprophilous fungi from Kenya[J]. Mycopathologia, 1998, 142:125-134
pmid: 16284849
|
[36] |
赵雪琴, 李宜垠, 杨柳, 等. 食草动物粪便中的真菌孢子-粪壳菌及其在第四纪环境研究中的意义[J]. 第四纪研究, 2013, 33(3) : 613-614
|
[37] |
Ahmed SI, Cain RF. Revision of the genera Sporormia and Sporormiella[J]. Canadian Journal of Botany, 1972, 50:419-477
doi: 10.1139/b72-061
URL
|
[38] |
Owen D, David S. Sporormiella fungal spores, a palynological means of detecting herbivore density[J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 237:40-50
doi: 10.1016/j.palaeo.2005.11.028
URL
|
[39] |
Feranec RS, Miller NG, Lothrop JC, et al. The Sporormiella proxy and end-Pleistocene megafaunal extinction: A perspective[J]. Quaternary International, 2011, 245:333-338
doi: 10.1016/j.quaint.2011.06.004
URL
|
[40] |
Baker AG, Cornelissen P, Bhagwat SA, et al. Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores[J]. Methods Ecological Evolution, 2016, 7(11):1273-1281
|
[41] |
Gill JL, Mclauchlan KK, Skibbe AM, et al. Linking abundances of the dung fungus Sporormiella to the density of bison: Implications for assessing grazing by megaherbivores in palaeorecords[J]. Journal of Ecology, 2013, 101(5):1125-1136
doi: 10.1111/jec.2013.101.issue-5
URL
|
[42] |
Chepstow AJ, Frogley MR, Baker AS. Comparison of Sporormiella dung fungal spores and oribatid mites as indicators of large herbivore presence: evidence from the Cuzco region of Peru[J]. Archaeology Science, 2019, 102:61-70
|
[43] |
Gauthier E, Bichet V, Massa C, et al. Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland[J]. Vegetation History and Archaeobotany, 2010, 19(5-6): 427-438.2
doi: 10.1007/s00334-010-0251-5
URL
|
[44] |
Finsinger W, Bigler C, Henbühl UK, et al. Human impacts and eutrophication patterns during the past ~200 years at Lago Grande di Avigliana(N. Italy)[J]. Journal of Paleolimnology, 2006, 36:55-67
doi: 10.1007/s10933-006-0002-x
URL
|
[45] |
Feeser I, Michael O’Connell. Late Holocene land-use and vegetation dynamics in an upland karst region based on pollen and coprophilous fungal spore analyses: an example from the Burren, western Ireland[J]. Vegetation History and Archaeobotany, 2010, 19(5-6):409-426
doi: 10.1007/s00334-009-0235-5
URL
|
[46] |
袁靖. 中国古代家养动物的动物考古学研究[J]. 第四纪研究, 2010, 30(2):298-298
|
[47] |
Cai DW, Zhang NF, Zhu SQ, et al. Ancient DNA reveals evidence of abundant aurochs(Bos primigenius) in Neolithic Northeast China[J]. Journal of Archaeological Science, 2018, 98:72-80
doi: 10.1016/j.jas.2018.08.003
URL
|