人类学学报 ›› 2019, Vol. 38 ›› Issue (03): 398-406.doi: 10.16359/j.cnki.cn11-1963/q.2018.0028cstr: 32091.14.j.cnki.cn11-1963/q.2018.0028
收稿日期:
2017-05-05
修回日期:
2018-03-27
出版日期:
2019-08-15
发布日期:
2020-09-10
作者简介:
潘雷,中国科学院古脊椎动物与古人类研究所助理研究员,主要从事体质人类学、早期人类起源与演化研究。Email: 基金资助:
Received:
2017-05-05
Revised:
2018-03-27
Online:
2019-08-15
Published:
2020-09-10
摘要:
在基于计算机断层扫描技术(CT)和虚拟图像处理技术的灵长类牙齿测量学研究中,经常需要分离三维虚拟模型的齿冠和齿根,再进行后续测量工作,如计算机辅助的生物力学分析、釉质厚度测量等。而分离齿冠和齿根这一步骤,目前有多种方法,如,1)根据齿颈线切分齿冠,或2)人工建立基底平面切分齿冠。为了评估这两种不同的处理方式对后续的牙齿测量学上的影响,本文使用三维方法测量了82例化石和现代人类下颌后部牙齿的釉质厚度,包括南方古猿、早期人属、尼安德特人和现代人。使用配对t检验对比发现,两种方法得到的釉质厚度数值上没有显著差别,但随后进行的种间比较发现,使用基底平面切分齿冠的方法比较费时,更依赖于测量者的人工操作,并且可能弱化了物种间前臼齿绝对釉质厚度的差异,造成系统误差。其原因是对于前臼齿和前部牙齿等齿颈线形状不规则的标本,基底平面难以建立或误差较大。在未来对釉质厚度的种间差异的研究中,特别对齿颈线形状不规则的标本(如人类前部牙齿及猩猩、黑猩猩的牙齿等),本文推荐使用齿颈线分离齿冠和齿根,测量和计算齿颈线之上的釉质厚度。釉质厚度有一定的分类学、功能形态学和系统发育学意义。本文积累了一批可供未来对比研究的原始数据,并且发现尼安德特人前臼齿的相对釉质厚度显著小于现代人,这与前人利用臼齿、犬齿所做的对比研究结果相同,支持了尼安德特人拥有较薄的相对釉质厚度这一观点。
中图分类号:
潘雷. 人类牙齿齿冠和齿根分离两种技术方法对牙釉质厚度测量的影响[J]. 人类学学报, 2019, 38(03): 398-406.
PAN Lei. Effects of two separation methods of crown and root on enamel thickness measurements[J]. Acta Anthropologica Sinica, 2019, 38(03): 398-406.
图1 两种测量方法示意图 (修改自Benazzi等[18]) A. 3D-b方法根据齿颈线(橙色)分离齿冠,随后软件自动根据齿颈线的形状差值生成成一光滑曲面覆盖齿冠底部,计算其上的釉质体积、齿质体积等。B. 3D-c方法建立一个与平面A和平面B(橙色)距离相等的平面(红色),以它作为基底平面切分齿冠和齿根。平面A和B的建立方法见"引言"
Fig.1 A sketch of two protocols(modified from Benazzi et al[18]) A. Method 3D-b digitally isolates the crown using the cervical line(orange), the bottom of the crown was sealed by a smooth surface interpolating the cervical line. B. Method 3D-c sections the teeth using a basal plane(red), which is halfway between Plane A and Plane B(orange). See Introduction for the explanation of Planes A and B
Taxa | P3(n) | P4(n) | M1(n) | M2(n) | M3(n) | Provenance | Enamel thickness data |
---|---|---|---|---|---|---|---|
P. robustus | 2 | 2 | 2 | 6 | 7 | Swartkrans Members 1, 2; Kromdraai B | Pan et al[ |
Au. africanus | 1 | 1 | 1 | Sterkfontein Member 4 | Pan et al[ | ||
Early Homo | 1 | 1 | 1 | 1 | Swartkrans Members 1, 2 | Pan et al[ | |
Neanderthals | 5 | 4 | 5 | 3 | 5 | Montmaurin; La Chaise Abri Suard; Krapina Level 8 | Pan et al[ |
Modern humans | 7 | 7 | 9 | 6 | 5 | Central Europe; East Asia | Pan et al[ |
表1 本文使用的牙齿标本
Tab.1 Composition of the study sample
Taxa | P3(n) | P4(n) | M1(n) | M2(n) | M3(n) | Provenance | Enamel thickness data |
---|---|---|---|---|---|---|---|
P. robustus | 2 | 2 | 2 | 6 | 7 | Swartkrans Members 1, 2; Kromdraai B | Pan et al[ |
Au. africanus | 1 | 1 | 1 | Sterkfontein Member 4 | Pan et al[ | ||
Early Homo | 1 | 1 | 1 | 1 | Swartkrans Members 1, 2 | Pan et al[ | |
Neanderthals | 5 | 4 | 5 | 3 | 5 | Montmaurin; La Chaise Abri Suard; Krapina Level 8 | Pan et al[ |
Modern humans | 7 | 7 | 9 | 6 | 5 | Central Europe; East Asia | Pan et al[ |
AET-b(mm) | AET-c(mm) | RET-b | RET-c | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | ||
Au. africanus | Premolars | 1.35 | - | 1.53 | - | 22.38 | - | 24.67 | - |
Molars | 1.82 | 1.81-1.83 | 1.94 | 1.88-1.99 | 26.91 | 25.74-28.08 | 29.50 | 28.00-31.00 | |
P. robustus | Premolars | 1.83 | 1.70-2.06 | 1.95 | 1.83-2.17 | 29.87 | 23.38-35.46 | 32.84 | 27.09-41.17 |
Molars | 2.06 | 1.66-2.70 | 2.18 | 1.64-2.78 | 24.83 | 19.32-38.00 | 27.51 | 19.44-48.56 | |
Early Homo | Premolars | 1.64 | 1.48-1.79 | 1.65 | 1.46-1.85 | 31.00 | 29.03-32.97 | 32.46 | 28.45-36.48 |
Molars | 1.57 | 1.38-1.77 | 1.58 | 1.37-1.79 | 23.78 | 20.05-27.52 | 26.31 | 20.23-32.39 | |
Neanderthals | Premolars | 0.73 | 0.59-1.10 | 0.80 | 0.60-1.11 | 12.80 | 9.96-19.03 | 13.92 | 10.27-19.07 |
Molars | 1.31 | 1.10-1.54 | 1.30 | 1.04-1.61 | 19.08 | 16.05-23.73 | 18.84 | 15.06-24.77 | |
H. sapiens | Premolars | 1.13 | 0.81-1.61 | 1.14 | 0.85-1.65 | 25.31 | 18.19-31.72 | 24.73 | 19.84-32.75 |
Molars | 1.36 | 1.06-1.69 | 1.37 | 1.12-1.60 | 22.53 | 17.56-28.39 | 23.06 | 19.04-27.26 |
表2 两种方法所得牙齿釉质厚度的平均值和区间
Tab.2 Average and range of enamel thickness values using 3D-b and 3D-c methods
AET-b(mm) | AET-c(mm) | RET-b | RET-c | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | ||
Au. africanus | Premolars | 1.35 | - | 1.53 | - | 22.38 | - | 24.67 | - |
Molars | 1.82 | 1.81-1.83 | 1.94 | 1.88-1.99 | 26.91 | 25.74-28.08 | 29.50 | 28.00-31.00 | |
P. robustus | Premolars | 1.83 | 1.70-2.06 | 1.95 | 1.83-2.17 | 29.87 | 23.38-35.46 | 32.84 | 27.09-41.17 |
Molars | 2.06 | 1.66-2.70 | 2.18 | 1.64-2.78 | 24.83 | 19.32-38.00 | 27.51 | 19.44-48.56 | |
Early Homo | Premolars | 1.64 | 1.48-1.79 | 1.65 | 1.46-1.85 | 31.00 | 29.03-32.97 | 32.46 | 28.45-36.48 |
Molars | 1.57 | 1.38-1.77 | 1.58 | 1.37-1.79 | 23.78 | 20.05-27.52 | 26.31 | 20.23-32.39 | |
Neanderthals | Premolars | 0.73 | 0.59-1.10 | 0.80 | 0.60-1.11 | 12.80 | 9.96-19.03 | 13.92 | 10.27-19.07 |
Molars | 1.31 | 1.10-1.54 | 1.30 | 1.04-1.61 | 19.08 | 16.05-23.73 | 18.84 | 15.06-24.77 | |
H. sapiens | Premolars | 1.13 | 0.81-1.61 | 1.14 | 0.85-1.65 | 25.31 | 18.19-31.72 | 24.73 | 19.84-32.75 |
Molars | 1.36 | 1.06-1.69 | 1.37 | 1.12-1.60 | 22.53 | 17.56-28.39 | 23.06 | 19.04-27.26 |
Tooth position | Group 1 | Group 2 | AET-b | AET-c | RET-b | RET-c |
---|---|---|---|---|---|---|
Premolars | Neanderthals | P. robustus | < | < | ||
Neanderthals | Early Homo | < | ||||
Neanderthals | H. sapiens | < | < | |||
Neanderthals | P. robustus | < | < | |||
Neanderthals | Au. africanus | < | < | |||
Molars | Au. africanus | Neanderthals | > | > | ||
P. robustus | H. sapiens | > | > | |||
P. robustus | Neanderthals | > | > | > | > | |
Early Homo | Neanderthals | |||||
H. sapiens | Neanderthals | > | > |
表3 Kruskal-Wallis非参数检验后的成对比较结果,仅显示釉质厚度存在显著性差异的类群
Tab.3 Conover’s post hoc pairwise comparisons after the Kruskal-Wallis test are reported below(significant results only)
Tooth position | Group 1 | Group 2 | AET-b | AET-c | RET-b | RET-c |
---|---|---|---|---|---|---|
Premolars | Neanderthals | P. robustus | < | < | ||
Neanderthals | Early Homo | < | ||||
Neanderthals | H. sapiens | < | < | |||
Neanderthals | P. robustus | < | < | |||
Neanderthals | Au. africanus | < | < | |||
Molars | Au. africanus | Neanderthals | > | > | ||
P. robustus | H. sapiens | > | > | |||
P. robustus | Neanderthals | > | > | > | > | |
Early Homo | Neanderthals | |||||
H. sapiens | Neanderthals | > | > |
图2 分别使用3D-b和3D-c测得各类群的平均厚度(mm)和相对釉质厚度 A, B.平均釉质厚度;C, D.相对釉质厚度。标准箱线图显示了50% 的样本数据、样本数据的中位数和上、下四分位数。对于极个别超出了理论上、下限的数据(极端异常数据),则以圆圈或星标表示。缩写:ROB:粗壮傍人;AFR:南方古猿非洲种;EH:现代人;NEA:尼安德特人
Fig.2 Average and relative enamel thickness(AET and RET) values in each taxon, provided by 3D-b and 3D-c methods A, B. AET; C, D. RET. Standard box and whisker plot revealing the interquartile range(25th-75th percentiles: boxes), 1.5 interquartile ranges(whiskers) and the median values(black line). Outliers more than 1.5 interquartile ranges from the box are signi?ed with circles, extremes more than 3 interquartile ranges from the box are signified with asterisks. AFR: Au. africanus; ROB: P. robustus; NEA: Neanderthals; EH: Extant human
Dental classes | Premolar AET | Premolar RET | Molar AET | Molar RET |
---|---|---|---|---|
Sig.(p) | 0.06 | 0.27 | 0.15 | 0.1 |
表4 两种测量方法所得牙齿釉质厚度的配对t检验结果(Alpha=0.05)
Tab.4 Paired t-test for differences in the enamel thickness values between 3D-b and 3D-c methods
Dental classes | Premolar AET | Premolar RET | Molar AET | Molar RET |
---|---|---|---|---|
Sig.(p) | 0.06 | 0.27 | 0.15 | 0.1 |
[1] | Kay R. The nut-crackers—A new theory of the adaptations of the Ramapithecinae[J]. American Journal of Physical Anthropology, 1981,55:141-151 |
[2] | Kay R. Dental evidence for the diet of Australopithecus[J]. Annual Review of Anthropology, 1985,14:315-341 |
[3] |
Martin L. Significance of enamel thickness in hominoid evolution[J]. Nature, 1985,314:260-263
URL pmid: 3920525 |
[4] | Ungar PS, Grine FE, Teaford MF, et al. Dental microwear and diets of African early Homo[J]. Journal of Human Evolution, 2006,50:78-95 |
[5] | Kono R, Suwa G. Enamel distribution patterns of extant human and hominoid molars: occlusal versus lateral enamel thickness[J]. Bulletin of the National Museum of Nature and Science, 2008,34:1-9 |
[6] |
Olejniczak A, Tafforeau P, Feeney RNM, et al. Three-dimensional primate molar enamel thickness[J]. Journal of Human Evolution, 2008,54:187-195
URL pmid: 18045652 |
[7] |
Smith TM, Olejniczak AJ, Reh S, et al. Brief communication: Enamel thickness trends in the dental arcade of humans and chimpanzees[J]. American Journal of Physical Anthropology, 2008,136:237-241
doi: 10.1002/ajpa.20796 URL pmid: 18324634 |
[8] |
Beynon A, Wood B. Variations in enamel thickness and structure in east African hominids[J]. American Journal of Physical Anthropology, 1986,70:177-193
URL pmid: 3090891 |
[9] |
White TD, Suwa G, Asfaw B. Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia[J]. Nature, 1994,371:306-312
doi: 10.1038/371306a0 URL pmid: 8090200 |
[10] |
Molnar S, Hildebolt C, Molnar IM, et al. Hominid enamel thickness: I. The Krapina neandertals[J]. American Journal of Physical Anthropology, 1993,92:131-138
doi: 10.1002/ajpa.1330920202 URL pmid: 8273825 |
[11] |
Smith TM, Olejniczak AJ, Zermeno JP, et al. Variation in enamel thickness within the genus Homo[J]. Journal of Human Evolution, 2012,62:395-411
doi: 10.1016/j.jhevol.2011.12.004 URL pmid: 22361504 |
[12] |
Skinner MM, Alemseged Z, Gaunitz C, et al. Enamel thickness trends in Plio-Pleistocene hominin mandibular molars[J]. Journal of Human Evolution, 2015,85:35-45
URL pmid: 26024565 |
[13] | Schwartz GT. Taxonomic and functional aspects of enamel cap structure in South African plio-pleistocene hominids: a high resolution computed tomographic study[D]. Ph. D. Dissertation, Washington University, 1997, 1-22 |
[14] | Zhang LZ, Zhao LX. Enamel thickness of Gigantopithecus blacki and its significance for dietary adaptation and phylogeny[J]. Acta Anthropologica Sinica, 2013,32:365-376 |
[15] | Tafforeau P. Phylogenetic and functional aspects of tooth enamel microstructure and three-dimensional structure of modern and fossil primate molars[D]. Ph.D. Dissertation, Université de Montpellier II, 2004, 1-133 |
[16] | Olejniczak A. Micro-computed tomography of primate molars[D]. Ph. D. Dissertation, Stony Brook University, 2006, 1-194 |
[17] | Feeney RNM, Zermeno JP, Reid DJ, et al. Enamel thickness in Asian human canines and premolars[J]. Anthropological Science, 2010,118:191-198 |
[18] |
Benazzi S, Panetta D, Fornai C, et al. Technical Note: Guidelines for the digital computation of 2D and 3D enamel thickness in hominoid teeth[J]. American Journal of Physical Anthropology, 2014,153:305-313
doi: 10.1002/ajpa.22421 URL pmid: 24242830 |
[19] |
Benazzi S, Fornai C, Bayle P, et al. Comparison of dental measurement systems for taxonomic assignment of Neanderthal and modern human lower second deciduous molars[J]. Journal of Human Evolution, 2011,61:320-326
doi: 10.1016/j.jhevol.2011.04.008 URL pmid: 21624638 |
[20] |
Fiorenza L, Benazzi S, Tausch J, et al. Molar macrowear reveals Neanderthal eco-geographic dietary variation[J]. PLOS ONE, 2011,6:e14769
doi: 10.1371/journal.pone.0014769 URL pmid: 21445243 |
[21] |
Beaudet A, Dumoncel J, Thackeray F, et al. Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids[J]. Journal of Human Evolution, 2016,95:104-120
doi: 10.1016/j.jhevol.2016.04.004 URL pmid: 27260177 |
[22] |
Olejniczak A, Smith TM, Feeney RNM, et al. Dental tissue proportions and enamel thickness in Neandertal and modern human molars[J]. Journal of Human Evolution, 2008,55:12-23
URL pmid: 18321561 |
[23] |
Zanolli C. Brief communication: molar crown inner structural organization in Javanese Homo erectus[J]. American Journal of Physical Anthropology, 2015,156:148-157
doi: 10.1002/ajpa.22611 URL pmid: 25209431 |
[24] |
Kuman K, Clarke R. Stratigraphy, artefacts, industries and hominid associations for Sterkfontein, Member 5[J]. Journal of Human Evolution, 2000,38:827-847
URL pmid: 10835264 |
[25] | Balter V, Blichert-Toftv J, Braga J, et al. U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa[J]. Earth and Planetary Science Letters, 2008,267:236-246 |
[26] |
Rink WJ, Schwarcz HP, Smith FH, et al. ESR dates for Krapina hominids[J]. Nature, 1995,378:24
doi: 10.1038/378024a0 URL pmid: 7477281 |
[27] | Girard M. La brèche à “Machairodus” de Montmaurin(Pyrénées centrales)[J]. Bulletin de l’Association Française pour l’étude du Quaternaire, 1973,3:193-207 |
[28] |
Macchiarelli R, Bondioli L, Debénath A, et al. How Neanderthal molar teeth grew[J]. Nature, 2006,444:748-751
doi: 10.1038/nature05314 URL pmid: 17122777 |
[29] |
Pan L, Dumoncel J, de Beer F, et al. Further morphological evidence on South African earliest Homo lower postcanine dentition: enamel thickness and enamel dentine junction[J]. Journal of Human Evolution, 2016,96:82-96
URL pmid: 27343773 |
[30] |
Molnar S. Human tooth wear, tooth function and cultural variability[J]. American Journal of Physical Anthropology, 1971,34:175-189
doi: 10.1002/ajpa.1330340204 URL pmid: 5572602 |
[31] | Kono R. Molar enamel thickness and distribution patterns in extant great apes and humans, new insights based on a 3-dimensional whole crown perspective[J]. Anthropological Science, 2004,112:121-146 |
[32] |
Buti L, Le Cabec A, Panetta D, et al. 3D enamel thickness in Neandertal and modern human permanent canines[J]. Journal of Human Evolution, 2017,113:162-172
doi: 10.1016/j.jhevol.2017.08.009 URL pmid: 29054166 |
[33] |
Benazzi S, Slon V, Talamo S, et al. The makers of the Protoaurignacian and implications for Neandertal extinction[J]. Science, 2015,348:793-796
doi: 10.1126/science.aaa2773 URL pmid: 25908660 |
[34] |
Kono R, Suwa G, Tanijiri T. A three-dimensional analysis of enamel distribution patterns in human permanent first molars[J]. Archives of Oral Biology, 2002,47:867-875
doi: 10.1016/s0003-9969(02)00151-6 URL pmid: 12450518 |
[35] | Kono RT, Zhang Y, Jin C, et al. A 3-dimensional assessment of molar enamel thickness and distribution pattern in Gigantopithecus blacki[J]. Quaternary International, 2014,354:46-51 |
[36] |
Zanolli C, Pan L, Dumoncel J, et al. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden[J]. Journal of Human Evolution, 2018,116:1-13
doi: 10.1016/j.jhevol.2017.11.002 URL pmid: 29477178 |
[1] | 潘雷, 廖卫, 王伟, 刘建辉, 吉学平, 杨晓梅, 郝以鑫. 禄丰古猿蝴蝶种下第四前臼齿釉质-齿质交界面的三维几何形态[J]. 人类学学报, 2020, 39(04): 555-563. |
[2] | 胡荣;赵凌霞. 广西化石猩猩牙齿釉质厚度研究[J]. 人类学学报, 2015, 34(03): 404-416. |
[3] | 张立召; 赵凌霞. 巨猿牙齿釉质厚度及对食性适应与系统演化的意义[J]. 人类学学报, 2013, 32(03): 365-376. |
[4] | 周亚威; 李海军; 朱泓. 全新世中国北方人群第一臼齿齿冠面积和齿尖相对面积的测量分析[J]. 人类学学报, 2013, 32(03): 319-329. |
[5] | 邢松; 周蜜; 刘武. 中国人牙齿形态测量分析——近代人群上、下颌前臼齿齿冠轮廓形状及其变异[J]. 人类学学报, 2010, 29(02): 132-149. |
[6] | 王翠斌; 赵凌霞; 金昌柱; 胡耀武; 王昌燧. 中国更新世猩猩类牙齿化石的测量研究及其分类学意义[J]. 人类学学报, 2009, 28(02): 192-200. |
[7] | 邢松; 刘武. 中国人牙齿形态测量分析——华北近代人群臼齿齿冠及齿尖面积[J]. 人类学学报, 2009, 28(02): 179-191. |
[8] | 尉苗; 王涛; 赵丛苍; 陈靓; 王昌燧. 甘肃西山遗址早期秦人的饮食与口腔健康[J]. 人类学学报, 2009, 28(01): 45-56. |
[9] | 董兴仁,范雪春. 清流狐狸洞人类牙齿化石记述[J]. 人类学学报, 1996, 15(04): 315-319. |
[10] | 刘武,曾祥龙. 陕西陇县战国时代人类牙齿形态特征[J]. 人类学学报, 1996, 15(04): 302-314. |
[11] | 刘武,曾祥龙. 第三臼齿退化及其在人类演化上的意义[J]. 人类学学报, 1996, 15(03): 185-199. |
[12] | 刘武. 华北新石器时代人类牙齿形态特征及其在现代中国人起源与演化上的意义[J]. 人类学学报, 1995, 14(04): 360-380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||