人类学学报 ›› 2020, Vol. 39 ›› Issue (04): 648-658.doi: 10.16359/j.cnki.cn11-1963/q.2020.0060cstr: 32091.14.j.cnki.cn11-1963/q.2020.0060
收稿日期:
2020-07-14
修回日期:
2020-08-30
出版日期:
2020-11-15
发布日期:
2020-11-06
作者简介:
张亚盟,山东大学文化遗产研究院,助理研究员。 E-mail:基金资助:
Received:
2020-07-14
Revised:
2020-08-30
Online:
2020-11-15
Published:
2020-11-06
摘要:
与面颅、脑颅和颅底不同,枕骨与人群间遗传信息的关系不明确且研究较少。传统形态测量方法对枕骨的研究难以全面反映枕骨的形态信息。为更加精细地探究枕骨形态与人群的关系,本文以亚洲、非洲和欧洲地区的103例现生男性头骨为研究对象,通过三维几何形态测量和多元统计分析的方法对枕骨三维形态和异速生长模式在人群间的差异进行了研究。研究结果表明,枕骨的大小和形状在现生人群中具有显著差异,然而这种差异并不足以区分不同人群。现代人枕骨的三维形态具有较大的变异,主要表现在枕外隆凸点的突出程度、上下相对位置以及枕平面与项平面的比例,其次表现在星点位置在前后、内外以及上下方向上的变化,斜坡的倾角变化等方面。异速生长的分析表明,不同人群中存在不同的异速生长模式,但是非洲和欧洲人群也存在相似的趋势。本研究认为枕骨三维形态在反映人群间遗传关系上作用较小,支持枕骨形态可能更多受到功能和环境等因素的影响。
中图分类号:
张亚盟. 枕骨三维形态在现生人群间的变异[J]. 人类学学报, 2020, 39(04): 648-658.
ZHANG Yameng. Three dimensional morphological variation of occiput in extant human populations[J]. Acta Anthropologica Sinica, 2020, 39(04): 648-658.
图1 枕骨上的三维标志点 1. 人字点(lambda);2. 枕外隆凸上点,枕外隆凸上边缘最低点;3. 枕外隆凸点(inion);4. 下项线与枕外嵴交点;5. 大孔后缘点(opisthion);6. 左侧枕髁后缘与枕骨大孔交点;7. 右侧枕髁后缘与枕骨大孔交点;8. 颅底点(basion);9. 蝶枕点(hormion);10. 左星点(asterion);11. 右星点(asterion)
Fig.1 Three-dimensional landmarks on occipital
图4 PC1和PC2散点图及从最小(青色)到最大值(紫色)枕骨三维形状叠印图
Fig.4 Scatter plot of PC1 and PC2 and their occipital superimposition from minimum (cyan) to maximum (purple) scores
Df | SS | MS | Rsq | F | Z | Pr(>F) | |
---|---|---|---|---|---|---|---|
人群 Population | 2 | 0.07 | 0.03 | 0.10 | 5.95 | 5.69 | 0.00* |
中心大小 CS | 1 | 0.02 | 0.02 | 0.02 | 2.77 | 2.50 | 0.01* |
人群*中心大小 Population*CS | 2 | 0.02 | 0.01 | 0.03 | 1.67 | 1.72 | 0.04* |
残差 Residuals | 97 | 0.56 | 0.01 | 0.84 | |||
总计 Total | 102 | 0.67 |
表1 多元协方差分析表
Tab.1 Table of MANCOVA
Df | SS | MS | Rsq | F | Z | Pr(>F) | |
---|---|---|---|---|---|---|---|
人群 Population | 2 | 0.07 | 0.03 | 0.10 | 5.95 | 5.69 | 0.00* |
中心大小 CS | 1 | 0.02 | 0.02 | 0.02 | 2.77 | 2.50 | 0.01* |
人群*中心大小 Population*CS | 2 | 0.02 | 0.01 | 0.03 | 1.67 | 1.72 | 0.04* |
残差 Residuals | 97 | 0.56 | 0.01 | 0.84 | |||
总计 Total | 102 | 0.67 |
图5 多元线性回归散点图以及中心大小从最小值(青色)到最大值(紫色)时枕骨形状变化
Fig.5 Scatterplot of multivariate regression and occipital shape changes from minimum centroid size (cyan) to maximum centroid size (purple)
[1] | Von Cramon-Taubadel N. Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects[J]. Journal of Anthropological Sciences, 2014,92(4):43-77 |
[2] |
Noback ML, Harvati K. Covariation in the human masticatory apparatus[J]. The Anatomical Record, 2015,298(1):64-84
doi: 10.1002/ar.23067 URL pmid: 25338706 |
[3] |
Hubbe M, Hanihara T, Harvati K. Climate Signatures in the Morphological Differentiation of Worldwide Modern Human Populations[J]. The Anatomical Record, 2009,292(11):1720-1733
doi: 10.1002/ar.20976 URL pmid: 19718714 |
[4] | Ruff CB. Morphological adaptation to climate in modern and fossil hominids[J]. American Journal of Physical Anthropology, 1994,37(S19):65-107 |
[5] | Boas F. Changes in the bodily form of descendants of immigrants[J]. American Anthropologist, 1912,14(3):530-562 |
[6] |
Relethford JH. Boas and beyond: Migration and craniometric variation[J]. American Journal of Human Biology, 2004,16(4):379-386
doi: 10.1002/ajhb.20045 URL pmid: 15214056 |
[7] | Sparks CS, Jantz RL. A reassessment of human cranial plasticity: Boas revisited[J]. Proceedings of the National Academy of Sciences, 2002,99(23):14636-14639 |
[8] | Gravlee CC, Bernard HR, Leonard WR. Heredity, environment, and cranial form: A reanalysis of Boas’s immigrant data[J]. American Anthropologist, 2003,105(1):125-138 |
[9] | Von Cramon-Taubadel N. Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies[J]. Proceedings of the National Academy of Sciences, 2011,108(49):19546-19551 |
[10] |
Shea BT. Eskimo craniofacial morphology, cold stress and the maxillary sinus[J]. American Journal of Physical Anthropology, 1977,47(2):289-300
doi: 10.1002/ajpa.1330470209 URL pmid: 910886 |
[11] |
Carey JW, Steegmann Jr AT. Human nasal protrusion, latitude, and climate[J]. American Journal of Physical Anthropology, 1981,56(3):313-319
doi: 10.1002/ajpa.1330560312 URL pmid: 7325224 |
[12] | Lieberman DE, Krovitz GE, Yates FW, et al. Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face[J]. Journal of Human Evolution, 2004,46(6):655-677 |
[13] |
Von Cramon‐Taubadel N. Congruence of individual cranial bone morphology and neutral molecular affinity patterns in modern humans[J]. American Journal of Physical Anthropology, 2009,140(2):205-215
doi: 10.1002/ajpa.21041 URL pmid: 19418568 |
[14] |
Harvati K, Weaver TD. Human cranial anatomy and the differential preservation of population history and climate signatures[J]. The Anatomical Record, 2006,288(12):1225-1233
doi: 10.1002/ar.a.20395 URL pmid: 17075844 |
[15] |
Smith HF. Which cranial regions reflect molecular distances reliably in humans? Evidence from three‐dimensional morphology[J]. American Journal of Human Biology, 2009,21(1):36-47
doi: 10.1002/ajhb.20805 URL pmid: 18663742 |
[16] |
Smith HF, Ritzman T, Otárola-Castillo E, et al. A 3-D geometric morphometric study of intraspecific variation in the ontogeny of the temporal bone in modern Homo sapiens[J]. Journal of Human Evolution, 2013,65(5):479-489
URL pmid: 24035724 |
[17] |
Bowcock AM, Ruiz-Linares A, Tomfohrde J, et al. High resolution of human evolutionary trees with polymorphic microsatellites[J]. Nature, 1994,368(6470):455-457
doi: 10.1038/368455a0 URL pmid: 7510853 |
[18] | Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping[J]. Annual Review of Genomics and Human Genetics, 2008,9:403-433 |
[19] |
Stringer C, Andrews P. Genetic and fossil evidence for the origin of modern humans[J]. Science, 1988,239(4845):1263-1268
URL pmid: 3125610 |
[20] | Sperber GH. Craniofacial Development[M]. Hamilton, Ontario, Canada: BC Decker, 2001 |
[21] |
Scott JH. The cranial base[J]. American Journal of Physical Anthropology, 1958,16(3):319-348
URL pmid: 13649900 |
[22] | Powell TV, Brodie AG. Closure of the spheno-occipital synchondrosis[J]. The Anatomical Record, 1963,147(1):15-23 |
[23] |
Liu JX, Thornell LE, Pedrosa-Domellöf F. Muscle spindles in the deep muscles of the human neck: a morphological and immunocytochemical study[J]. Journal of Histochemistry and Cytochemistry, 2003,51(2):175-186
doi: 10.1177/002215540305100206 URL pmid: 12533526 |
[24] | Kulkarni V, Chandy M, Babu K. Quantitative study of muscle spindles in suboccipital muscles of human foetuses[J]. Neurology India, 2001,49(4):355 |
[25] | Tobias PV. Studies on the occipital bone in Africa: V, the occipital curvature in fossil man and the light it throws on the morphogenesis of the Bushman[J]. 1959,17(1):1-11 |
[26] | Tobias PV. Studies on the occipital bone in Africa: III, sex differences and age changes in occipital curvature and their bearing on the morphogenesis of differences between bushmen and negroes[J]. South African Journal of Medical Science, 1959,23:135-146 |
[27] | Tobias PV. Studies on the occipital bone in Africa: I, pearson’s occipital index and the chord-arc index in modern african crania: means, minimum values, and variability[J]. The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 1959,89(2):233-252 |
[28] | Tobias PV. Studies on the occipital bone in Africa: II, resemblances and differences of occipital patterns among modern Africans[J]. Zeitschrift für Morphologie und Anthropologie, 1959, (H. 1):9-19 |
[29] |
Tobias PV. Studies on the occipital bone in Africa: IV, components and correlations of occipital curvature in relation to cranial growth[J]. Human Biology, 1959,31(2):138-161
URL pmid: 13664299 |
[30] | Tobias PV. Studies on the occipital bone in Africa: VI, the relative usefulness of pearson’s occipital index and the occipital chord-arc index[J]. Man, 1960,60:23-25 |
[31] |
Babu YR, Kanchan T, Attiku Y, et al. Sex estimation from foramen magnum dimensions in an Indian population[J]. Journal of Forensic and Legal Medicine, 2012,19(3):162-167
doi: 10.1016/j.jflm.2011.12.019 URL |
[32] |
Gapert R, Black S, Last J. Sex determination from the foramen magnum: discriminant function analysis in an eighteenth and nineteenth century British sample[J]. International Journal of Legal Medicine, 2009,123(1):25-33
doi: 10.1007/s00414-008-0256-0 URL |
[33] |
Gruber P, Henneberg M, Böni T, et al. Variability of human foramen magnum size[J]. The Anatomical Record, 2009,292(11):1713-1719
doi: 10.1002/ar.21005 URL pmid: 19777568 |
[34] |
Günay Y, Altinkök M. The value of the size of foramen magnum in sex determination[J]. Journal of Clinical Forensic Medicine, 2000,7(3):147-149
doi: 10.1054/jcfm.2000.0430 URL pmid: 16083665 |
[35] |
Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’[J]. Italian Journal of Zoology, 2004,71(1):5-16
doi: 10.1080/11250000409356545 URL |
[36] |
James Rohlf F, Marcus LF. A revolution morphometrics[J]. Trends in Ecology & Evolution, 1993,8(4):129-132
doi: 10.1016/0169-5347(93)90024-J URL pmid: 21236128 |
[37] |
Vieira M, Mayo SJ, De Andrade IM. Geometric morphometrics of leaves of Anacardium microcarpum Ducke and A. occidentale L. (Anacardiaceae) from the coastal region of Piauí, Brazil[J]. Brazilian Journal of Botany, 2014,37(3):315-327
doi: 10.1007/s40415-014-0072-3 URL |
[38] |
Ponton D. Is geometric morphometrics efficient for comparing otolith shape of different fish species?[J]. Journal of Morphology, 2006,267(6):750-757
doi: 10.1002/jmor.10439 URL pmid: 16526058 |
[39] |
Macholán M. A geometric morphometric analysis of the shape of the first upper molar in mice of the genus Mus (Muridae, Rodentia)[J]. Journal of Zoology, 2006,270(4):672-681
doi: 10.1111/jzo.2006.270.issue-4 URL |
[40] |
La Croix S, Holekamp KE, Shivik JA, et al. Ontogenetic relationships between cranium and mandible in coyotes and hyenas[J]. Journal of Morphology, 2011,272(6):662-674
doi: 10.1002/jmor.10934 URL |
[41] |
Van Heteren AH, Maclarnon A, Soligo C, et al. Functional morphology of the cave bear (Ursus spelaeus) cranium: A three-dimensional geometric morphometric analysis[J]. Quaternary International, 2014, 339-340:209-216
doi: 10.1016/j.quaint.2013.10.056 URL |
[42] |
Bonnan MF. Linear and geometric morphometric analysis of long bone scaling patterns in Jurassic neosauropod dinosaurs: Their functional and paleobiological implications[J]. Anatomical Record, 2007,290(9):1089-1111
doi: 10.1002/(ISSN)1932-8494 URL |
[43] |
Bookstein F, Schäfer K, Prossinger H, et al. Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis[J]. Anatomical Record, 1999,257(6):217-224
doi: 10.1002/(SICI)1097-0185(19991215)257:6<217::AID-AR7>3.0.CO;2-W URL pmid: 10620751 |
[44] |
Bookstein FL, Gunz P, Mitterœcker P, et al. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution[J]. Journal of Human Evolution, 2003,44(2):167-187
doi: 10.1016/s0047-2484(02)00201-4 URL pmid: 12662941 |
[45] |
Delson E, Harvati K, Reddy D, et al. The Sambungmacan 3 Homo erectus calvaria: a comparative morphometric and morphological analysis[J]. Anatomical Record, 2001,262(4):380-397
doi: 10.1002/ar.1048 URL pmid: 11275970 |
[46] |
Doyon L. On the shape of things: A geometric morphometrics approach to investigate Aurignacian group membership[J]. Journal of Archaeological Science, 2019,101:99-114
doi: 10.1016/j.jas.2018.11.009 URL |
[47] |
Xing S, Gibbon V, Clarke R, et al. Geometric morphometric analyses of orbit shape in Asian, African, and European human populations[J]. Anthropological Science, 2013,121(1):1-11
doi: 10.1537/ase.120803 URL |
[48] |
Pan L, Thackeray JF, Dumoncel J, et al. Intra-individual metameric variation expressed at the enamel-dentine junction of lower post-canine dentition of South African fossil hominins and modern humans[J]. American Journal of Physical Anthropology, 2017,163(4):806-815
doi: 10.1002/ajpa.23240 URL pmid: 28573649 |
[49] |
Cui Y, Wu X. A geometric morphometric study of a Middle Pleistocene cranium from Hexian, China[J]. Journal of Human Evolution, 2015,88:54-69
URL pmid: 26553818 |
[50] |
Mitteroecker P, Gunz P, Bernhard M, et al. Comparison of cranial ontogenetic trajectories among great apes and humans[J]. Journal of Human Evolution, 2004,46(6):679-698
URL pmid: 15183670 |
[51] | Zelditch ML, Swiderski DL, Sheets HD. Geometric morphometrics for biologists: a primer[M]. San Diego: Elsevier Academic Press, 2012 |
[52] |
Rosas A, Bastir M. Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex[J]. American Journal of Physical Anthropology, 2002,117(3):236-245
doi: 10.1002/ajpa.10023 URL pmid: 11842403 |
[53] |
Bigoni L, Velemínská J, Brůzek J. Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex[J]. Homo, 2010,61(1):16-32
doi: 10.1016/j.jchb.2009.09.004 URL |
[54] | Wood CG, Lynch JM. Sexual dimorphism in the craniofacial skeleton of modern humans[M]. In: Marcus LF, Corti M, Loy A, et al. Advances in Morphometrics. New York; Plenum Press. 1996: 407-414 |
[55] |
Kimmerle EH, Ross A, Slice D. Sexual dimorphism in America: geometric morphometric analysis of the craniofacial region[J]. Journal of Forensic Sciences, 2008,53(1):54-57
doi: 10.1111/j.1556-4029.2007.00627.x URL pmid: 18279240 |
[56] |
Franklin D, Freedman L, Milne N. Sexual dimorphism and discriminant function sexing in indigenous South African crania[J]. Homo, 2005,55(3):213-228
doi: 10.1016/j.jchb.2004.08.001 URL |
[57] |
Maass P, Friedling LJ. Morphometric analysis of the neurocranium in an adult South African cadaveric sample[J]. Journal of Forensic Sciences, 2019,64(2):367-374
doi: 10.1111/1556-4029.13878 URL pmid: 30129084 |
[58] | Ran L, Helal S, Moore S. Drishti: An integrated indoor/outdoor blind navigation system and service[CP]. 2004 |
[59] | Cignoni P, Callieri M, Corsini M, et al. Meshlab: an open-source mesh processing tool [CP]. 2008 |
[60] |
Gould SJ. Allometry and size in ontogeny and phylogeny[J]. Biological Reviews, 1966,41(4):587-638
doi: 10.1111/j.1469-185x.1966.tb01624.x URL pmid: 5342162 |
[61] | Schlichting CD, Pigliucci M. Phenotypic evolution: a reaction norm perspective[M]. Sunderland, Massachusetts: Sinauer Associates Inc., 1998 |
[62] |
Gould SJ. Allometry in primates, with emphasis on scaling and the evolution of the brain[J]. Contributions to Primatology, 1975,5:244-292
URL pmid: 803425 |
[63] |
Finlay BL, Darlington RB, Nicastro N. Developmental structure in brain evolution[J]. Behavioral and Brain Sciences, 2001,24(2):263-308
URL pmid: 11530543 |
[64] |
Martin RD. Relative brain size and basal metabolic rate in terrestrial vertebrates[J]. Nature, 1981,293(5827):57-60
doi: 10.1038/293057a0 URL pmid: 7266659 |
[65] | Martin R. Allometric approaches to the evolution of the primate nervous system[M]. In. Primate brain evolution. Springer. 1982: 39-56 |
[66] |
Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics[J]. Development Genes and Evolution, 2016,226(3):113-137
URL pmid: 27038023 |
[67] | R Core Team. R: A language and environment for statistical computing[CP]. 2018, |
[68] |
Adams DC, Otárola-Castillo E. geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013,4(4):393-399
doi: 10.1111/2041-210X.12035 URL |
[69] | Schlager S. Morpho and Rvcg-Shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations[M]. In: Zheng G, Li S, Székely G. Statistical shape and deformation analysis. Academic Press. 2017: 217-256 |
[70] | Dryden IL, Mardia KV. Statistical shape analysis: with applications in R[M]. John Wiley & Sons, 2016 |
[71] |
Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse[J]. Journal of Open Source Software, 2019,4(43):1686
doi: 10.21105/joss URL |
[72] | 赵永生, 曾雯, 魏成敏, 等. 大汶口文化居民枕部变形研究[J]. 东南文化, 2017(3):64-72 |
[73] | Schijman E. Artificial cranial deformation in newborns in the pre-Columbian Andes[J]. Child’s Nervous System, 2005,21(11):945-950 |
[74] | Harvati K, Weaver TD. Reliability of cranial morphology in reconstructing Neanderthal phylogeny[M]. In: Harvati K, Harrison T. Neanderthals revisited: new approaches and perspectives. Dordrecht; Springer. 2006: 239-254 |
[75] | Biegert J. The evaluation of characteristics of the skull, hands and feet for primate taxonomy[M]. In. Classification and Human Evolution. Aldine, Chicago; Taylor & Francis. 1963: 116-145 |
[76] |
Strait DS, Ross CF. Kinematic data on primate head and neck posture: Implications for the evolution of basicranial flexion and an evaluation of registration planes used in paleoanthropology[J]. American Journal of Physical Anthropology, 1999,108(2):205-222
doi: 10.1002/(SICI)1096-8644(199902)108:2<205::AID-AJPA6>3.0.CO;2-F URL pmid: 9988382 |
[77] |
Strait DS. The scaling of basicranial flexion and length[J]. Journal of Human Evolution, 1999,37(5):701-719
doi: 10.1006/jhev.1999.0314 URL pmid: 10536088 |
[78] |
Lieberman DE, Ross CF, Ravosa MJ. The primate cranial base: ontogeny, function, and integration[J]. American Journal of Physical Anthropology, 2000,113(S31):117-169
doi: 10.1002/(ISSN)1096-8644 URL |
[79] |
Lahr MM, Wright RVS. The question of robusticity and the relationship between cranial size and shape in Homo sapiens[J]. Journal of Human Evolution, 1996,31(2):157-191
doi: 10.1006/jhev.1996.0056 URL |
[1] | 郑连斌. 中国活体测量研究的回顾[J]. 人类学学报, 2024, 43(04): 529-535. |
[2] | 李咏兰, 郑连斌. 中国南、北人群体部特征类型的纬度划分[J]. 人类学学报, 2024, 43(04): 597-612. |
[3] | 李彦雷. 河北汉族成年男性身高与足迹的相关性[J]. 人类学学报, 2024, 43(04): 657-667. |
[4] | 贺乐天, 陈国科, 杨谊时. 甘肃五坝墓地人骨反映的史前人群变迁[J]. 人类学学报, 2024, 43(02): 247-258. |
[5] | 叶梓琪, 何安益, 梁优, 李法军. 广西灰窑田史前遗址人类髌骨的形态变异[J]. 人类学学报, 2024, 43(02): 259-272. |
[6] | 陈峰, 曾雨欣, 付昶, 张海龙, 王博, 肖小勇, 李海军. 新疆且末扎滚鲁克墓地二期居民的牙齿磨耗[J]. 人类学学报, 2024, 43(02): 273-286. |
[7] | 王法岗, 杨石霞, 葛俊逸, 岳健平, 赵克良, Andreu Ollé, 李文艳, 杨海勇, 刘连强, 关莹, 谢飞, Francesco d’Errico, Michael Petraglia, 邓成龙. 泥河湾盆地下马碑遗址2013年发掘简报[J]. 人类学学报, 2024, 43(01): 143-156. |
[8] | 加藤真二. 旧石器时代晚期人类在欧亚东部地区的扩散和文化传播[J]. 人类学学报, 2023, 42(06): 842-856. |
[9] | Omry BARZILAI. 以色列内盖夫沙漠的发现对黎凡特石器工业来源与去向的启示[J]. 人类学学报, 2023, 42(05): 626-637. |
[10] | 张咸鹏, 温有锋, 李文慧, 李欣, 曲泉颖, 徐国昌. 中国阿尔泰语系人群头面部的表型特征[J]. 人类学学报, 2023, 42(03): 342-358. |
[11] | 张明, 平婉菁, YANG Melinda Anna, 付巧妹. 古基因组揭示史前欧亚大陆现代人复杂遗传历史[J]. 人类学学报, 2023, 42(03): 412-421. |
[12] | 杜抱朴, 殷钰喆, 谭伊, 张宇格, 范博, 姚植正, 郭航. 中国现代人群两性身高差异分布及其影响因素[J]. 人类学学报, 2023, 42(02): 191-200. |
[13] | 孙晓璠, 张全超, 牟萍媛, 杨及耘, 曹俊. 山西洪洞西冯堡清代墓地缠足女性的骨骼损伤和关节疾病[J]. 人类学学报, 2023, 42(02): 201-213. |
[14] | 贺乐天, 王永强, 魏文斌. 新疆哈密拉甫却克墓地人的颅面部测量学特征[J]. 人类学学报, 2022, 41(06): 1017-1027. |
[15] | 邢松. 现代人出现和演化的化石证据[J]. 人类学学报, 2022, 41(06): 1069-1082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||