人类学学报 ›› 2021, Vol. 40 ›› Issue (01): 1-11.doi: 10.16359/j.cnki.cn11-1963/q.2020.0078
• 研究论文 • 下一篇
丁曼雨1,2,3(), 何伟4, 王恬怡1,2,5, 夏格旺堆4, 张明1,2,3, 曹鹏1,2, 刘峰1,2, 戴情燕1,2, 付巧妹1,2,3()
收稿日期:
2019-02-26
修回日期:
2019-05-07
出版日期:
2021-02-15
发布日期:
2021-02-25
通讯作者:
付巧妹
作者简介:
丁曼雨(1993-),女,中国科学院古脊椎动物与古人类研究所硕士研究生,主要从事古DNA研究。Email: 基金资助:
DING Manyu1,2,3(), HE Wei4, WANG Tianyi1,2,5, Shargan Wangdue4, ZHANG Ming1,2,3, CAO Peng1,2, LIU Feng1,2, DAI Qingyan1,2, FU Qiaomei1,2,3()
Received:
2019-02-26
Revised:
2019-05-07
Online:
2021-02-15
Published:
2021-02-25
Contact:
FU Qiaomei
摘要:
目前青藏高原高海拔地区古DNA研究匮乏。拉托唐古墓地位于青藏高原西南高海拔区域,本文对该墓地出土距今约700年的人骨进行古DNA提取,捕获了高质量线粒体全基因组数据,结合东亚线粒体基因组数据库,运用遗传统计方法开展分析。研究结果表明,距今3000年以内青藏高原西南部人群的遗传历史具有连续性,距今700年左右的拉托唐古墓地居民与距今3150-1250年的古代尼泊尔居民以及现代中国西藏居民母系遗传关系较近,且他们都具有共同的M9a1a1c1b1a单倍群。对M9a1a1c1b1a单倍群的深入研究发现,距今10930-5150年期间青藏高原可能发生了人口扩张事件。以上结果为我们了解古代青藏高原高海拔地区人群遗传历史提供了重要信息。
中图分类号:
丁曼雨, 何伟, 王恬怡, 夏格旺堆, 张明, 曹鹏, 刘峰, 戴情燕, 付巧妹. 中国西藏拉托唐古墓地古代居民线粒体全基因组研究[J]. 人类学学报, 2021, 40(01): 1-11.
DING Manyu, HE Wei, WANG Tianyi, Shargan Wangdue, ZHANG Ming, CAO Peng, LIU Feng, DAI Qingyan, FU Qiaomei. A study of the mitochondrial genome of ancient inhabitants from the Latuotanggu cemetery, Tibet, China[J]. Acta Anthropologica Sinica, 2021, 40(01): 1-11.
建库号Library ID | 样本号 Sample ID | 墓号 Cemetery ID | 平均污染度 Average Contamination | 污染95%置信区间 95% CI of Contamination | 5’ C->T | 测年 14C Date(BP) | 覆盖度 Coverage | 单倍体型Haplotype |
---|---|---|---|---|---|---|---|---|
L7056 | C3425 | M4 | 0.04% | 0.01-0.13 | 2.2 % | 760~675 | 476.6 | M9a1a1c1b1a |
L7055 | C3427 | M6 | 0.76% | 0.55-1.05 | 9 % | NA | 372.0 | M9a1a1c1b1a |
L7054 | C3428 | M5② | 0.69% | 0.48-0.99 | 3.9 % | NA | 396.1 | A17 |
表1 拉托唐古墓地样本基本信息
Tab.1 Information on the LTTG cemetery samples
建库号Library ID | 样本号 Sample ID | 墓号 Cemetery ID | 平均污染度 Average Contamination | 污染95%置信区间 95% CI of Contamination | 5’ C->T | 测年 14C Date(BP) | 覆盖度 Coverage | 单倍体型Haplotype |
---|---|---|---|---|---|---|---|---|
L7056 | C3425 | M4 | 0.04% | 0.01-0.13 | 2.2 % | 760~675 | 476.6 | M9a1a1c1b1a |
L7055 | C3427 | M6 | 0.76% | 0.55-1.05 | 9 % | NA | 372.0 | M9a1a1c1b1a |
L7054 | C3428 | M5② | 0.69% | 0.48-0.99 | 3.9 % | NA | 396.1 | A17 |
图1 本研究相关古代线粒体全基因组人群地理位置示意图 包括中国西藏拉托唐古墓地(LTTG)与尼泊尔Chokhopani、Samdzong、Mebrak遗址(a.Nepal)
Fig.1 Geographical location of ancient LaTuoTangGu and ancient Nepalese populations
地区 Area | 人群 Population | M9a Frequency | 文献来源 Reference |
---|---|---|---|
中国西藏 | LTTG | 50% | 本研究 |
尼泊尔 | a.Nepal | 50% | [ |
中国西藏 | Nyingchi | 13% | [ |
中国西藏 | Lhasa | 25% | [ |
中国西藏 | Shigatse | 25% | [ |
中国西藏 | Chamdo | 13% | [ |
中国西藏 | Deng | 39.56% | [ |
中国西藏 | Monpa | 41.17% | [ |
中国西藏 | Lhoba | 15.38% | [ |
中国西藏 | Sherpa | 18.40% | [ |
中国西藏 | Ngari | 24% | [ |
中国北方 | Daur | 10% | [ |
中国北方 | Tu | 10% | [ |
中国南方 | Han | 2% | [ |
尼泊尔 | Nepal | 12% | [ |
印度北部 | NE.India | 9% | [ |
表2 M9单倍群分布频率高的现代西藏与周边人群单倍群频率表
Tab.2 Haplogroup frequencies
地区 Area | 人群 Population | M9a Frequency | 文献来源 Reference |
---|---|---|---|
中国西藏 | LTTG | 50% | 本研究 |
尼泊尔 | a.Nepal | 50% | [ |
中国西藏 | Nyingchi | 13% | [ |
中国西藏 | Lhasa | 25% | [ |
中国西藏 | Shigatse | 25% | [ |
中国西藏 | Chamdo | 13% | [ |
中国西藏 | Deng | 39.56% | [ |
中国西藏 | Monpa | 41.17% | [ |
中国西藏 | Lhoba | 15.38% | [ |
中国西藏 | Sherpa | 18.40% | [ |
中国西藏 | Ngari | 24% | [ |
中国北方 | Daur | 10% | [ |
中国北方 | Tu | 10% | [ |
中国南方 | Han | 2% | [ |
尼泊尔 | Nepal | 12% | [ |
印度北部 | NE.India | 9% | [ |
[1] |
Zhang XL, Ha BB, Wang SJ, et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago[J]. Science, 2018, 362(6418): 1049-1051
doi: 10.1126/science.aat8824 URL pmid: 30498126 |
[2] |
Lu D, Lou H, Kai Y, et al. Ancestral origins and genetic history of Tibetan highlanders[J]. American Journal of Human Genetics, 2016, 99(3): 580-594
doi: 10.1016/j.ajhg.2016.07.002 URL pmid: 27569548 |
[3] |
Li J, Zeng W, Zhang Y, et al. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese[J]. BMC Evolutionary Biology, 2017, 17(1): 239
doi: 10.1186/s12862-017-1082-0 URL pmid: 29202706 |
[4] |
Yong-Bin Z, Hong-Jie L, Sheng-Nan L, et al. Ancient DNA evidence supports the contribution of Di-Qiang people to the Han Chinese gene pool[J]. American Journal of Physical Anthropology, 2011, 144(2): 258-268
doi: 10.1002/ajpa.21399 URL pmid: 20872743 |
[5] |
Handt O, Krings M, Ward RH, et al. The retrieval of ancient human DNA sequences[J]. American Journal of Human Genetics, 1996, 59(2): 368-76
URL pmid: 8755923 |
[6] |
Jeong C, Ozga AT, Witonsky DB, et al. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7485
doi: 10.1073/pnas.1520844113 URL |
[7] |
Duong NT, Macholdt E, Ton ND, et al. Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia[J]. Scientific Reports, 2018, 8(1): 11651.
doi: 10.1038/s41598-018-29989-0 URL pmid: 30076323 |
[8] |
Lippold S, Xu H, Ko A, et al. Human paternal and maternal demographic histories: Insights from high-resolution Y chromosome and mtDNA sequences[J]. Investigative Genetics, 2014, 5(1): 13.
doi: 10.1186/2041-2223-5-13 URL |
[9] |
Zhendong Q, Yajun Y, Longli K, et al. A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the last glacial maximum[J]. American Journal of Physical Anthropology, 2010, 143(4): 555-569
doi: 10.1002/ajpa.21350 URL pmid: 20623602 |
[10] |
Mian Z, Qing-Peng K, Hua-Wei W, et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2009, 106(50): 21230-5
doi: 10.1073/pnas.0907844106 URL |
[11] |
Peng MS, Palanichamy MG, Yao YG, et al. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a’b[J]. BMC Biology, 2011, 9(1): 2.
doi: 10.1186/1741-7007-9-2 URL |
[12] |
Peng MS, Xu W, Song JJ, et al. Mitochondrial genomes uncover the maternal history of the Pamir populations[J]. European Journal of Human Genetics, 2017.
doi: 10.1038/s41431-020-00807-4 URL pmid: 33495594 |
[13] |
Kang L, Zheng HX, Zhang M, et al. MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders[J]. Scientific Reports, 2016, 6(1): 31083
doi: 10.1038/srep31083 URL |
[14] |
Li YC, Wang HW, Tian JY, et al. Ancient inland human dispersals from Myanmar into interior East Asia since the Late Pleistocene[J]. Scientific Reports, 2015, 5:9473
doi: 10.1038/srep09473 URL pmid: 25826227 |
[15] |
Adimoolam C, Satish K, Jwalapuram S, et al. Updating phylogeny of mitochondrial DNA macrohaplogroup m in India: Dispersal of modern human in South Asian corridor[J]. Plos One, 2009, 4(10): e7447
doi: 10.1371/journal.pone.0007447 URL pmid: 19823670 |
[16] |
Summerer M, Horst J, Erhart G, et al. Large-scale mitochondrial DNA analysis in southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar[J]. BMC Evolutionary Biology, 2014, 14(1): 17
doi: 10.1186/1471-2148-14-17 URL |
[17] |
Wang HW, Li YC, Sun F, et al. Revisiting the role of the Himalayas in peopling Nepal: Insights from mitochondrial genomes[J]. Journal of Human Genetics, 2012, 57(4): 228
doi: 10.1038/jhg.2012.8 URL |
[18] |
Bhandari S, Zhang X, Cui C, et al. Genetic evidence of a recent Tibetan ancestry to Sherpas in the Himalayan region[J]. Scientific Reports, 2015, 5:16249
doi: 10.1038/srep16249 URL pmid: 26538459 |
[19] |
Fornarino S, Pala M, Battaglia V, et al. Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): A reservoir of genetic variation[J]. BMC Evolutionary Biology, 2009, 9(1): 154
doi: 10.1186/1471-2148-9-154 URL |
[20] |
Derenko M, Malyarchuk B, Denisova G, et al. Western Eurasian ancestry in modern Siberians based on mitogenomic data[J]. BMC Evolutionary Biology, 2014, 14(1): 217
doi: 10.1186/s12862-014-0217-9 URL |
[21] |
Albert Min-Shan K, Chung-Yu C, Qiaomei F, et al. Early Austronesians: into and out of Taiwan[J]. American Journal of Human Genetics, 2014, 94(3): 426-36
doi: 10.1016/j.ajhg.2014.02.003 URL |
[22] |
Kutanan W, Kampuansai J, Srikummool M, et al. Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of TaifKadai languages[J]. Human Genetics, 2017, 136(1): 85-98
doi: 10.1007/s00439-016-1742-y URL pmid: 27837350 |
[23] |
Dabney J, Knapp M, Glocke I, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15758-63
doi: 10.1073/pnas.1314445110 URL |
[24] |
Rohland N, Harney E, Mallick S, et al. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA[J]. Philosophical Transactions of the Royal Society of London, 2015, 370(1660): 20130624
doi: 10.1098/rstb.2013.0624 URL pmid: 25487342 |
[25] |
Jesse D, Matthias M. Length and GC-biases during sequencing library amplification: A comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries[J]. Biotechniques, 2012, 52(2): 87-94
doi: 10.2144/000113809 URL |
[26] |
Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform[J]. Nucleic Acids Research, 2012, 40(1): e3
doi: 10.1093/nar/gkr771 URL pmid: 22021376 |
[27] |
Fu Q, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan Cave, China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2223
doi: 10.1073/pnas.1221359110 URL |
[28] |
Gabriel R, Udo S, Janet K. LeeHom: Adaptor trimming and merging for Illumina sequencing reads[J]. Nucleic Acids Research, 2014, 42(18): e141
doi: 10.1093/nar/gku699 URL pmid: 25100869 |
[29] |
Gabriel R, Udo S, Tomislav M, et al. DeML: Robust demultiplexing of Illumina sequences using a likelihood-based approach[J]. Bioinformatics, 2014, 31(5): 770-2
doi: 10.1093/bioinformatics/btu719 URL pmid: 25359895 |
[30] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-60
doi: 10.1093/bioinformatics/btp324 URL pmid: 19451168 |
[31] |
Anita KBT, Dominic P, Sebastian SN, et al. HaploGrep: A fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups[J]. Human Mutation, 2011, 32(1): 25-32
doi: 10.1002/humu.21382 URL |
[32] | Oven MV. PhyloTree Build 17: Growing the human mitochondrial DNA tree[J]. Forensic Science International, Genetics Supplement, 2015. |
[33] |
Kutanan W, et al. New insights from Thailand into the maternal genetic history of mainland southeast Asia. Eur J Hum Genet, 2018, 26(6): 898-911
doi: 10.1038/s41431-018-0113-7 URL pmid: 29483671 |
[34] | Edgar RC. Muscle: Multiple sequence alignment with improved accuracy and speed[A]// Proceedings of the Computational Systems Bioinformatics Conference[C], IEEE, 2004. |
[35] |
Edgar RC. Muscle: A multiple sequence alignment method with reduced time and space complexity[J]. BMC Bioinformatics, 2004, 5:113
doi: 10.1186/1471-2105-5-113 URL pmid: 15318951 |
[36] |
Bandelt HJ, Forster P. HLA. Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution, 1999, 16(1): 37-48
doi: 10.1093/oxfordjournals.molbev.a026036 URL pmid: 10331250 |
[37] |
Leigh JW, Bryant D, Nakagawa S. Popart: Full-feature software for haplotype network construction[J]. Methods in Ecology and Evolution, 2015, 6(9): 1110-1116
doi: 10.1111/mee3.2015.6.issue-9 URL |
[38] |
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10[J]. Virus Evolution, 2018, 4(1).
doi: 10.1093/ve/vex043 URL pmid: 29340211 |
[39] |
Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567
doi: 10.1111/j.1755-0998.2010.02847.x URL pmid: 21565059 |
[40] |
Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing[J]. Nature Genetics, 2007, 39(12): 1522-1527
doi: 10.1038/ng.2007.42 URL pmid: 17982454 |
[41] |
Sawyer S, Renaud G, Viola B, et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15696
doi: 10.1073/pnas.1519905112 URL pmid: 26630009 |
[42] |
Patterson N, Moorjani P, Luo Y, et al. Ancient admixture in human history[J]. Genetics, 2012, 192(3): 1065
doi: 10.1534/genetics.112.145037 URL |
[43] |
David P. jModelTest: Phylogenetic model averaging[J]. Molecular Biology & Evolution, 2008, 25(7): 1253-1256
doi: 10.1093/molbev/msn083 URL pmid: 18397919 |
[44] |
Jose Manuel S, Diego D, Taboada GL, et al. jmodeltest.org: Selection of nucleotide substitution models on the cloud[J]. Bioinformatics, 2014, 30(9): 1310-1311
doi: 10.1093/bioinformatics/btu032 URL |
[45] |
Meyer MC, et al. Permanent human occupation of the central Tibetan Plateau in the early Holocene[J]. Science, 2017, 355(6320): 64-67
doi: 10.1126/science.aag0357 URL pmid: 28059763 |
[46] |
Brantingham PJ, Xing G, Madsen DB, et al. Late occupation of the high-elevation northern Tibetan plateau based on cosmogenic, luminescence, and radiocarbon ages[J]. Geoarchaeology, 2013, 28(5): 413-431
doi: 10.1002/gea.2013.28.issue-5 URL |
[47] |
Chen FH, et al. , Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P[J]. Science, 2015, 347(6219): 248-250
doi: 10.1126/science.1259172 URL pmid: 25593179 |
[48] |
Lu H. Colonization of the Tibetan plateau, permanent settlement, and the spread of agriculture: Reflection on current debates on the prehistoric archeology of the Tibetan plateau[J]. Archaeological Research in Asia, 2016, 5:12-15
doi: 10.1016/j.ara.2016.02.010 URL |
[49] |
Qi X, Cui C, Peng Y, et al. Genetic evidence of Paleolithic colonization and Neolithic expansion of modern humans on the Tibetan plateau[J]. Molecular Biology and Evolution, 2013, 30(8): 1761-78
doi: 10.1093/molbev/mst093 URL |
[1] | 宋艳花, 申如梦. 黄河中游山西吉县冯家坡遗址发掘简报[J]. 人类学学报, 2023, 42(03): 381-389. |
[2] | 张明, 平婉菁, 付巧妹. 古基因组揭示史前欧亚大陆现代人复杂遗传历史[J]. 人类学学报, 2023, 42(03): 412-421. |
[3] | 陈醉, 朱永刚. 内蒙古哈民忙哈遗址废弃情境观察与分析[J]. 人类学学报, 2022, 41(02): 342-353. |
[4] | 徐廷, 方启, 赵莹, 石玉鑫, 杨国荣, 闫家海. 吉林汪清新兴遗址第1地点调查与试掘简报[J]. 人类学学报, 2021, 40(05): 904-916. |
[5] | 梁琪瑶, 张伟, 陈全家, 田禾. 黑龙江齐齐哈尔洪河遗址出土的骨器[J]. 人类学学报, 2021, 40(05): 751-763. |
[6] | 陈宥成, 侯光良, 高靖易, 陈晓良. 青藏高原冬给措纳湖畔新发现的细石器及其同周边地区的技术关系[J]. 人类学学报, 2021, 40(01): 28-39. |
[7] | 王恬怡, 赵东月, 张明, 乔诗雨, 杨帆, 万杨, 杨若薇, 曹鹏, 刘峰, 付巧妹. 古DNA捕获新技术与中国南方早期人群遗传研究新格局[J]. 人类学学报, 2020, 39(04): 680-694. |
[8] | 赵静, 王传超. 古DNA提取技术对比及概述[J]. 人类学学报, 2020, 39(04): 706-716. |
[9] | 李春香, 张帆, 马鹏程, 王立新, 崔银秋. 线粒体全基因组揭示嫩江流域史前人群遗传结构的动态变化[J]. 人类学学报, 2020, 39(04): 695-705. |
[10] | 张雅军, 张旭, 赵欣, 仝涛, 李林辉. 从头骨形态学和古DNA探究公元3~4世纪西藏阿里地区人群的来源[J]. 人类学学报, 2020, 39(03): 435-449. |
[11] | 梁琪瑶, 陈全家, 王春雪. 吉林大安市后套木嘎遗址出土鸟类遗存研究[J]. 人类学学报, 2020, 39(01): 118-126. |
[12] | 邓婉文, 刘锁强, 巫幼波, 刘拓, 李文成, 何嘉宁, 王幼平. 广东英德青塘遗址黄门岩2号洞地点2016年度的发掘[J]. 人类学学报, 2020, 39(01): 64-73. |
[13] | 张佩琪;李法军;王明辉. 广西顶蛳山遗址人骨的龋齿病理观察[J]. 人类学学报, 2018, 37(03): 393-405. |
[14] | 张明;付巧妹. 史前古人类之间的基因交流及对当今现代人的影响[J]. 人类学学报, 2018, 37(02): 206-218. |
[15] | 王社江;张晓凌;陈祖军;仪明洁;葛俊逸;达娃;何伟;张建林;栗静舒;洛桑;哈比卜;李林辉;高星. 藏北尼阿木底遗址发现的似阿舍利石器——兼论晚更新世人类向青藏高原的扩张[J]. 人类学学报, 2018, 37(02): 253-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||