人类学学报 ›› 2021, Vol. 40 ›› Issue (03): 513-525.doi: 10.16359/j.1000-3193/AAS.2021.0042cstr: 32091.14.j.1000-3193/AAS.2021.0042
收稿日期:
2020-12-18
修回日期:
2021-02-18
出版日期:
2021-06-15
发布日期:
2021-06-24
通讯作者:
张双权
作者简介:
黄超(1991-),男, 中国科学院古脊椎动物与古人类研究所博士研究生,研究方向为旧石器时代动物考古学。E-mail: 基金资助:
HUANG Chao1,2,3(), ZHANG Shuangquan1,2,3()
Received:
2020-12-18
Revised:
2021-02-18
Online:
2021-06-15
Published:
2021-06-24
Contact:
ZHANG Shuangquan
摘要:
烧骨作为考古遗址中较为常见的一类特征遗物,对研究古人类用火行为有着重要的意义。过往研究表明,骨骼在加热过程中,其内部晶体会根据加热程度的不同产生不同的变化。骨骼在加热前的状态,能够在一定程度上反映古人类对骨骼进行热处理的动机与目的。为了了解骨骼在焚烧前的初始状态是否会对其内部晶体产生不同的影响,本研究利用56件现生羊骨进行了烧骨实验。实验设置了带肉骨、剔肉骨和干骨三种不同初始状态的骨骼,并在前人的研究基础上进一步细化了焚烧温度和时间参数。焚烧完成后,利用X射线衍射技术对所有样品进行了分析并观察其衍射图的差异。实验结果显示,骨骼有机质含量的多少,骨骼内部元素的不同,在一定的温度和时间条件下,会对骨骼内晶体的形成产生不同的影响。文章最后探讨了这种差异在考古研究中运用的可能性。
中图分类号:
黄超, 张双权. X射线衍射技术在烧骨实验研究中的初步应用[J]. 人类学学报, 2021, 40(03): 513-525.
HUANG Chao, ZHANG Shuangquan. Preliminary application of the X-rays diffraction technique in experimental study of burnt bones[J]. Acta Anthropologica Sinica, 2021, 40(03): 513-525.
图 1 羟基磷灰石标准样品粉末衍射图及其主要衍射峰 括号内的数字为衍射峰指数,是XRD中表征物相衍射峰的一种方式/The number in brackets is the diffraction peak index, which is a way to characterize the phase diffraction peaks in XRD
Fig.1 The powder diffraction pattern of hydroxyapatite standard sample and its main peaks
图4 未经马弗炉加热的骨骼样品粉末衍射图 (a)新鲜骨骼(Flresh bone);(b)干骨(Dry bone)。可以看到未经马弗炉加热的干骨已经能初步识别衍射峰300和202
Fig.4 Powder diffraction pattern of bone samples before heating in a muffle furnace
骨骼状态 Sample status 加热温度 Temperature | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
300 °C | 0.13 | 0.14 | 0.25 |
350 °C | 0.13 | 0.15 | 0.19 |
400 °C | 0.21 | 0.11 | 0.17 |
450 °C | 0.14 | 0.1 | 0.21 |
500 °C | 0.23 | 0.17 | 0.14 |
550 °C | 0.22 | 0.18 | 0.31 |
600 °C | 0.45 | 0.38 | 0.41 |
650 °C | 1.19 | 0.76 | 0.52 |
700 °C | 1.27 | 1.2 | 0.96 |
750 °C | 1.26 | 1.21 | 0.87 |
800 °C | 1.47 | 1.33 | 1.2 |
表 1 加热时间120 min的样品结晶度
Tab.1 The crystallinity index of the samples heated for 120 min
骨骼状态 Sample status 加热温度 Temperature | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
300 °C | 0.13 | 0.14 | 0.25 |
350 °C | 0.13 | 0.15 | 0.19 |
400 °C | 0.21 | 0.11 | 0.17 |
450 °C | 0.14 | 0.1 | 0.21 |
500 °C | 0.23 | 0.17 | 0.14 |
550 °C | 0.22 | 0.18 | 0.31 |
600 °C | 0.45 | 0.38 | 0.41 |
650 °C | 1.19 | 0.76 | 0.52 |
700 °C | 1.27 | 1.2 | 0.96 |
750 °C | 1.26 | 1.21 | 0.87 |
800 °C | 1.47 | 1.33 | 1.2 |
骨骼状态 Sample Status 加热时间 Time | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
30 min | 0.12 | 0.13 | 0.31 |
60 min | 0.14 | 0.14 | 0.21 |
90 min | 0.11 | 0.13 | 0.36 |
120 min | 0.13 | 0.14 | 0.25 |
150 min | 0.14 | 0.14 | 0.19 |
180 min | 0.19 | 0.13 | 0.28 |
210 min | 0.22 | 0.13 | 0.31 |
240 min | 0.15 | 0.13 | 0.24 |
表 2 加热温度为300 °C 的样品结晶度
Tab.2 The crystallinity index of the samples heated at 300°C
骨骼状态 Sample Status 加热时间 Time | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
30 min | 0.12 | 0.13 | 0.31 |
60 min | 0.14 | 0.14 | 0.21 |
90 min | 0.11 | 0.13 | 0.36 |
120 min | 0.13 | 0.14 | 0.25 |
150 min | 0.14 | 0.14 | 0.19 |
180 min | 0.19 | 0.13 | 0.28 |
210 min | 0.22 | 0.13 | 0.31 |
240 min | 0.15 | 0.13 | 0.24 |
图11 三种初始状态的骨骼在600 °C -800 °C 的衍射图峰型对比 (a) 600°C -750°C的带肉骨(Fleshed bones);(b) 600°C -750°C的剔肉骨(Defleshed bones);(c) 600°C -750°C的干骨(Dry bones);(d) 800°C三种初始状态的骨骼(three initial states of bones: blue line-dry bone; red line-defleshed bone; black line-fleshed bone)。加热时间均为120 min,X轴为衍射角2θ(X axis represents 2θ)。
Fig.11 Powder diffraction patterns of three initial states of bones heat-treated from 600 °C to 800 °C for 120min
图12 不同加热时间的三种初始状态骨骼的衍射图细节对比 左: 带肉骨(Fleshed bones); 中: 剔肉骨(Defleshed bones); 右:干骨(Dry bones)。加热温度300 °C。2θ范围为25°-35°
Fig.12 A detailed comparison of the diffraction patterns of three initial state of bones heat-treated at 300°C from 30 min to 240min
图13 实验中观察到的在三种初始状态骨骼中生成的附加相 左:带肉骨/Fleshed bones); 中: 剔肉骨(Defleshed bones); 右:干骨(Dry bones)。加热时间为120 min(heat-treated from 650°C to 800°C for 120 min)。黑色箭头所指为附加相的衍射峰所在位置,该附加相极有可能为Ca3(PO4)2 /The peaks positions are pointed out with black arrows (2θ: 30°-40°)
Fig.13 The peaks of tricalcium phosphate Ca3(PO4)2 are found in three initial states of bones
[1] |
Black D. Evidences of the use of fire by Sinanthropus[J]. Bulletin of the Geological Society of China, 1932,11(2):107-108
doi: 10.1111/j.1755-6724.1932.mp11002002.x URL |
[2] |
Brain CK, Sillen A. Evindence From The Swartkrans Cave For The Earliest Use Of Fire[J]. nature, 1988,336(6198):464-466
doi: 10.1038/336464a0 URL |
[3] |
Shahack-Gross R, Bar-Yosef O, Weiner S. Black-Coloured Bones in Hayonim Cave, Israel: Differentiating Between Burning and Oxide Staining[J]. Journal of Archaeological Science, 1997,24(5):439-446
doi: 10.1006/jasc.1996.0128 URL |
[4] |
Weiner S, Xu Q, Goldberg P, et al. Evidence for the use of fire at Zhoukoudian,China[J]. Science, 1998,281:251-253
doi: 10.1126/science.281.5374.251 URL |
[5] |
Stiner MC, Kuhn SL, Surovell TA, et al. Bone Preservation in Hayonim Cave (Israel): a Macroscopic and Mineralogical Study[J]. Journal of Archaeological Science, 2001,28(6):643-659
doi: 10.1006/jasc.2000.0634 URL |
[6] | Alperson-Afil N, Goren-Inbar N (Eds.). The Acheulian site of Gesher Benot Ya’aqov volume II: Ancient flames and controlled use of fire[M]. Springer Science & Business Media, 2010,10 |
[7] | Berna F, Goldberg P, Horwitz LK, et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(20):E1215-E1220 |
[8] | 高星, 张双权, 张乐, 等. 关于北京猿人用火的证据:研究历史、争议与新进展[J]. 人类学学报, 2016,35(4):481-492 |
[9] |
Gao X, Zhang S, Zhang Y, et al. Evidence of Hominin Use and Maintenance of Fire at Zhoukoudian[J]. Current Anthropology, 2017,58(S16):S267-S277
doi: 10.1086/692501 URL |
[10] |
Stiner MC, Kuhn SL, Weiner S, et al. Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone[J]. Journal of Archaeological Science, 1995,22(2):223-237
doi: 10.1006/jasc.1995.0024 URL |
[11] |
Herrmann B. On histological investigations of cremated human remains[J]. Journal of Human Evolution, 1977,6(2):101-103
doi: 10.1016/S0047-2484(77)80112-7 URL |
[12] | Brain CK. The Occurrence of Burnt Bones at Swartkrans and Their Implications for the Control of Fire by Early Hominids[A].In: Brain CK. Swartkrans: A Cave’s Chronicle of Early man[M]. Pretoria: Transvaal Museum, 1993: 229-242 |
[13] |
Hanson M, Cain CR. Examining histology to identify burned bone[J]. Journal of Archaeological Science, 2007,34(11):1902-1913
doi: 10.1016/j.jas.2007.01.009 URL |
[14] | Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage[J]. Journal of Archaeological Science, 1984,4(11):307-325 |
[15] |
Person A, Bocherens H, Saliège J, et al. Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis[J]. Journal of Archaeological Science, 1995,22(2):211-221
doi: 10.1006/jasc.1995.0023 URL |
[16] |
Thompson TJU, Gauthier M, Islam M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone[J]. Journal of Archaeological Science, 2009,36(3):910-914
doi: 10.1016/j.jas.2008.11.013 URL |
[17] |
Thompson TJU, Islam M, Piduru K, et al. An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,299(1-2):168-174
doi: 10.1016/j.palaeo.2010.10.044 URL |
[18] | Schmahl WW, Kocsis B, Toncala A, et al. The Crystalline State of Archaeological Bone Material[A]. In: Grupe G, Grigat A, Mcglynn GC. Across the Alps in Prehistory[M]. Cham: Springer International Publishing, 2017, 75-104 |
[19] |
Van Hoesel A, Reidsma FH, van Os BJH, et al. Combusted bone: Physical and chemical changes of bone during laboratory simulated heating under oxidising conditions and their relevance for the study of ancient fire use[J]. Journal of Archaeological Science: Reports, 2019,28:102033
doi: 10.1016/j.jasrep.2019.102033 URL |
[20] |
Elliott JC. Calcium Phosphate Biominerals[J]. Reviews in Mineralogy and Geochemistry, 2002,48(1):427-453
doi: 10.2138/rmg.2002.48.11 URL |
[21] |
Monge G, Carretero MI, Pozo M, et al. Mineralogical changes in fossil bone from Cueva del Angel, Spain: archaeological implications and occurrence of whitlockite[J]. Journal of Archaeological Science, 2014,46:6-15
doi: 10.1016/j.jas.2014.02.033 URL |
[22] |
Greiner M, Rodríguez-Navarro A, Heinig MF, et al. Bone incineration: An experimental study on mineral structure, colour and crystalline state[J]. Journal of Archaeological Science: Reports, 2019,25:507-518
doi: 10.1016/j.jasrep.2019.05.009 URL |
[23] |
Hiller JC, Thompson TJU, Evison MP, et al. Bone mineral change during experimental heating: an X-ray scattering investigation[J]. Biomaterials, 2003,24(28):5091-5097
pmid: 14568425 |
[24] |
Piga G, Malgosa A, Thompson TJU, et al. A new calibration of the XRD technique for the study of archaeological burned human remains[J]. Journal of Archaeological Science, 2008,35(8):2171-2178
doi: 10.1016/j.jas.2008.02.003 URL |
[25] |
Rogers K, Beckett S, Kuhn S, et al. Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010,296(1-2):125-129
doi: 10.1016/j.palaeo.2010.06.021 URL |
[26] | 张双权, 张乐, 栗静舒, 等. 晚更新世晚期中国古人类的广谱适应生存——动物考古学的证据[J]. 中国科学:地球科学, 2016,8:1024-1036 |
[27] |
Aldeias V. Experimental Approaches to Archaeological Fire Features and Their Behavioral Relevance[J]. Current Anthropology, 2017,58(S16):S191-S205
doi: 10.1086/691210 URL |
[28] | McKinley JI. The Anglo-Saxon Cemetery at Spong Hill, North Elmham Part VIII: The Cremations. East Anglian Archaeology Report NO.69[M]. Dereham: Norfolk Museum Service, 1994 |
[29] |
Forbes G, Sc. B, B, MBC, et al. The Effects of Heat on the Histological Structure of Bone[J]. The Police Journal, 1941,14(1):50-60
doi: 10.1177/0032258X4101400108 URL |
[30] |
Posner AS. Crystal Chemistry of Bone Mineral[J]. Physiological Reviews, 1969,49(4):760-787
doi: 10.1152/physrev.1969.49.4.760 URL |
[31] |
Jumpei A, Seiichi M. Ca3(PO4)2 - CaNaPO4 System[J]. Bulletin of the Chemical Society of Japan, 1968,41(2):342-347
doi: 10.1246/bcsj.41.342 URL |
[32] | Piga G, Amarante A, Makhoul C, et al. β-Tricalcium Phosphate Interferes with the Assessment of Crystallinity in Burned Skeletal Remains[J]. Journal of Spectroscopy, 2018, ( 3-4):1-10 |
[1] | 李怡楠, 赵芳超, 周亚威. 山东昌乐八里庄遗址的人类烧骨及其反映的火葬方式[J]. 人类学学报, 2024, 43(03): 367-379. |
[2] | 仝广, 李锋, 赵海龙, 闫晓蒙, 高星. 泥河湾盆地火山角砾岩原料的热处理实验[J]. 人类学学报, 2024, 43(01): 81-90. |
[3] | 杜雨薇, 张乐, 叶芷, 裴树文. 蔚县盆地吉家庄旧石器遗址动物骨骼的埋藏学分析[J]. 人类学学报, 2023, 42(03): 359-372. |
[4] | 李楠, 李成伟, 何嘉宁. 西周时期一例疑似刖刑的病例[J]. 人类学学报, 2022, 41(05): 826-836. |
[5] | 胡耀武. 稳定同位素生物考古学的概念、简史、原理和目标[J]. 人类学学报, 2021, 40(03): 526-534. |
[6] | 戴静雯, 张双权, 张乐. 史前人类对动物骨骼油脂的开发和利用[J]. 人类学学报, 2021, 40(03): 503-512. |
[7] | 王谦, 张全超. 全球健康史项目亚洲模块—— 亚洲古代人群健康、疾病和生活方式的大数据[J]. 人类学学报, 2020, 39(04): 727-732. |
[8] | 黄超, 张双权. 旧石器遗址出土烧骨的技术分析及其对考古学的启示[J]. 人类学学报, 2020, 39(02): 249-260. |
[9] | 张双权, 宋艳花, 张乐, 许乐, 李磊, 石金鸣. 柿子滩遗址第9地点出土的动物烧骨[J]. 人类学学报, 2019, 38(04): 598-612. |
[10] | 张乐, 张双权, 高星. 地理信息系统在动物考古学研究中的应用: 以贵州马鞍山遗址出土的动物遗存为例[J]. 人类学学报, 2019, 38(03): 407-418. |
[11] | 张双权, 彭菲, 张乐, 郭家龙, 王惠民, 黄超, 戴静雯, 张钰哲, 高星. 宁夏鸽子山遗址第10地点出土动物骨骼的埋藏学初步观察[J]. 人类学学报, 2019, 38(02): 232-244. |
[12] | 张全超;张雯欣. 《生物考古学:通过骨骼解读人类行为(第二版)》评介[J]. 人类学学报, 2017, 36(01): 143-144. |
[13] | 侯侃;王明辉;朱泓. 赤峰兴隆沟遗址人类椎骨疾病的生物考古学研究[J]. 人类学学报, 2017, 36(01): 87-100. |
[14] | 栗静舒;张双权;高星;Henry T.Bunn. 许家窑遗址马科动物的死亡年龄[J]. 人类学学报, 2017, 36(01): 62-73. |
[15] | 张雯欣;张全超. 《人类进化和生物考古视角下的牙齿生长发育》评介[J]. 人类学学报, 2016, 35(04): 633-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||