[1] |
陈淳. 中国细石核类型和工艺初探——兼谈与东北亚、西北美的文化联系[J]. 人类学学报, 1983, 2(4): 331-341
|
[2] |
王建, 王益人. 下川细石核形制研究[J]. 人类学学报, 1991, 10(1): 1-8
|
[3] |
安志敏. 中国细石器发现一百年[J]. 考古, 2000, 5: 45-56
|
[4] |
陈胜前. 细石叶工艺的起源——一个理论与生态的视角[J]. 考古学研究, 2008, 244-264
|
[5] |
Flenniken JJ. The paleolithic Dyuktai pressure blade technique of siberia[J]. Arctic Anthropology, 1987, 24(2): 117-132
|
[6] |
王幼平. 华北旧石器晚期环境变化与人类迁徙扩散[J]. 人类学学报, 2018, 37(3): 341-351
|
[7] |
王幼平. 华北细石器技术的出现与发展[J]. 人类学学报, 2018, 37(4): 565-576
|
[8] |
靳英帅, 张晓凌, 仪明洁. 楔形石核概念内涵与细石核分类初探[J]. 人类学学报, 2021, 40(2): 307-319
|
[9] |
Turq A, Roebroeks W, Bourguignon L, et al. The fragmented character of middle palaeolithic stone tool technology[J]. Journal of human evolution, 2013, 65(5): 641-655
doi: 10.1016/j.jhevol.2013.07.014
pmid: 24074611
|
[10] |
Ohnuma K. Exprerimental studies in the determination of manners of micro-blade detachment[J]. Al-Rafidan, 1993, 14: 477-494
|
[11] |
Tabarev AV. Paleolithic wedge-shaped microcores and experiments with pocket devices[J]. Lithic technology, 1997, 22(2): 139-149
doi: 10.1080/01977261.1997.11754539
URL
|
[12] |
赵海龙. 细石叶剥制实验研究[J]. 人类学学报, 2011, 30(1): 22-31
|
[13] |
Pelegrin J. New Experimental Observations for the Characterization of Pressure Blade Production Techniques[M]. In: Desrosiers P M. The Emergence of Pressure Blade Making: From Origin to Modern Experimentation, 2012, 465-500
|
[14] |
大場正善. 細石刃核をどう持つか(2):南九州出土細石刃関連資料を中心とした同さ連鎖に基づく石器技術学分析[J]. 鹿儿岛考古, 2019(49): 31-44
|
[15] |
大場正善. 細石刃核をどう持つか:北海道奥白滝ⅰ遺跡と上白滝8 遺跡の細石刃資料の動作連鎖概念に基づく技術学的分析[J]. 旧石器研究, 2014(10): 41-66
|
[16] |
Gómez Coutouly YA. The emergence of pressure knapping microblade technology in Northeast Asia[J]. Radiocarbon, 2018, 60(3): 821-855
doi: 10.1017/RDC.2018.30
URL
|
[17] |
盖培, 卫奇. 虎头梁旧石器时代晚期遗址的发现[J]. 古脊椎动物与古人类, 1977, 15(4): 287-300
|
[18] |
陈宥成, 曲彤丽. 旧大陆东西方比较视野下的细石器起源再讨论[J]. 华夏考古, 2018(5): 37-43
|
[19] |
Lin SC, Rezek Z, Dibble HL. Experimental design and experimental inference in stone artifact archaeology[J]. Journal of Archaeological Method and Theory, 2018, 25(3): 663-688
doi: 10.1007/s10816-017-9351-1
|
[20] |
Bleed P. Cheap, Regular, and Reliable: Implications of design variation in late pleistocene japanese microblade technology[J]. Archeological papers of the American Anthropological Association, 2002, 12(1): 95-102
doi: 10.1525/ap3a.2002.12.1.95
URL
|
[21] |
Kuhl FP, Giardina CR. Elliptic Fourier Features of a Closed Contour[J]. Computer graphics and image processing, 1982, 18(3): 236-258
doi: 10.1016/0146-664X(82)90034-X
URL
|
[22] |
Ferson S, Rohlf FJ, Koehn RK. Measuring shape variation of two-dimensional outlines[J]. Systematic Biology, 1985, 34(1): 59-68
doi: 10.1093/sysbio/34.1.59
URL
|
[23] |
Rezek Z, Lin S, Iovita R, et al. The relative effects of core surface morphology on flake shape and other attributes[J]. Journal of Archaeological Science, 2011, 38(6): 1346-1359
doi: 10.1016/j.jas.2011.01.014
URL
|
[24] |
Hoggard CS, McNabb J, Cole JN. The application of Elliptic Fourier analysis in understanding biface shape and symmetry through the British Acheulean[J]. Journal of Paleolithic Archaeology, 2019, 2(2): 115-133
doi: 10.1007/s41982-019-00024-6
|
[25] |
Radinović M, Kajtez I. Outlining the knapping techniques: Assessment of the shape and regularity of prismatic blades using Elliptic Fourier analysis[J]. Journal of Archaeological Science: Reports, 2021, 38: 103079
doi: 10.1016/j.jasrep.2021.103079
URL
|
[26] |
Bonhomme V, Picq S, Gaucherel C, et al. Momocs: Outline analysis using R[J]. Journal of Statistical Software, 2014, 56(13): 1-24
|