人类学学报 ›› 2023, Vol. 42 ›› Issue (03): 412-421.doi: 10.16359/j.1000-3193/AAS.2023.0010cstr: 32091.14.j.1000-3193/AAS.2023.0010
张明1,2,3(), 平婉菁2,3, YANG Melinda Anna2,4, 付巧妹2,3()
收稿日期:
2022-03-04
修回日期:
2022-08-05
出版日期:
2023-06-15
发布日期:
2023-06-13
通讯作者:
付巧妹,研究员,主要从事古DNA研究。E-mail: 作者简介:
张明,副教授,主要从事古DNA研究。E-mail: 基金资助:
ZHANG Ming1,2,3(), PING Wanjing2,3, YANG Melinda Anna2,4, FU Qiaomei2,3()
Received:
2022-03-04
Revised:
2022-08-05
Online:
2023-06-15
Published:
2023-06-13
摘要:
古DNA提取与测序技术的发展,让科学家们能够利用史前现代人样本直接开展古基因组研究。古基因组研究发现,在约4万年前,欧亚大陆上至少存在着6个独立的现代人群体,其中3个群体并未对现今人群贡献基因。在距今4万年至末次盛冰期结束,欧亚大陆至少有5个具有代表性的现代人群体。末次盛冰期结束后的部分现代人群体与现今人群拥有更近的遗传关系,而部分群体则未对现今人群贡献基因。本文基于末次盛冰期前(45~19 kaBP)与末次盛冰期后(19~10 kaBP)两个重要时间段的欧亚大陆史前现代人的基因组研究,梳理欧亚现代人在时间与空间上的发展脉络,重点探究此前研究相对滞后的欧亚大陆东部地区。
中图分类号:
张明, 平婉菁, YANG Melinda Anna, 付巧妹. 古基因组揭示史前欧亚大陆现代人复杂遗传历史[J]. 人类学学报, 2023, 42(03): 412-421.
ZHANG Ming, PING Wanjing, YANG Melinda Anna, FU Qiaomei. Ancient genomes reveal the complex genetic history of Prehistoric Eurasian modern humans[J]. Acta Anthropologica Sinica, 2023, 42(03): 412-421.
图1 45~10 kaBP欧亚大陆人群示意图 A)阶段1 Period I(45~19 kaBP);B)阶段2 Period II(19~10 kaBP):AE,以Kostenki 14为代表的古欧洲人群相关的遗传成分ancestry related to Ancient Europeans (represent by Kostenki 14);BE,与未经取样的古欧亚人群相关且在现今欧洲人群、部分古代和现今中东人群中可找到的遗传成分ancestry related to an unsampled population known as Basal Eurasians and found in small numbers in ancient and present-day populations of the Near East and in present-day Europeans;ANS,以Yana为代表的古西伯利亚北部人群相关的遗传成分ancestry related to ancient North Siberians (represent by Yana); ANE, ancestry related to ancient North Eurasians (represent by Mal’ta-1 and Afontova Gora-3);ANE,以Mal’ta-1和Afontova Gora-3为代表的古北欧亚人群相关的遗传成分;BEA,以田园洞人和AR33K为代表的基础东亚人相关的遗传成分;BA,以La368为代表的古代东南亚狩猎采集人群相关祖源成分;AEA,东亚古北方人群和东亚古南方人群分离前的亚洲人群;ANEA,以AR14K、扁扁洞、Devil’s Gate等个体为代表的东亚古北方人群;ASEA,以奇和洞、亮岛个体为代表的东亚古南方人群;AGX,以隆林个体为代表的古广西人群。图1A中的紫色代表田园洞人和Goyet Q116-1个体相联系的成分。虚线区域是指该遗传成分源自根据遗传数据所推测的人群状态,但未发现这一时期的古代样本。各颜色大致显示为某代表区域之间或之内的遗传成分组合,且颜色梯度显示为不同人群之间可能存在的遗传联系(如基因流)。
Fig.1 Schematic of Populations in Eurasia from 45 to 10 kaBP AE, ; BE, ; ANS, ; BEA, ancestry related to Basal East Asians (represent by Tianyuan and AR33K); BA, ancestry related to Basal Asians (represented by La368); AEA, ancestry related to Ancient East Asians; ANEA, ancestry related to Ancient Northern East Asians (represented by AR14K, Bianbian, Devil’s Gate, etc); ASEA, ancestry related to Ancient Southern East Asians (represented by Qihe and Liangdao); AGX, ancestry related to Ancient Guangxi population (represented by Longlin). The purple color in Fig.1A shows the connection between Tianyuan and Goyet Q116-1. Broken lines indicate no ancient genetic samples have been found for a population with the inferred ancestry. Colors loosely indicate genetic groupings between or within a region, with color gradients showing the connections (i.e., gene flow) that may exist between different ancient populations.
[1] |
Nielsen R, Akey JM, Jakobsson M, et al. Tracing the peopling of the world through genomics[J]. Nature, 2017, 541: 302-310
doi: 10.1038/nature21347 |
[2] |
Sikora M, Pitulko VV, Sousa VC, et al. The population history of northeastern Siberia since the Pleistocene[J]. Nature, 2019, 570: 182-188
doi: 10.1038/s41586-019-1279-z |
[3] |
Skoglund P, Mathieson I. Ancient genomics of modern humans: the first decade[J]. Annual Review of Genomics and Human Genetics, 2018, 19: 381-404
doi: 10.1146/annurev-genom-083117-021749 pmid: 29709204 |
[4] |
Bradtmoller M, Pastoors A, Weninger B, et al. The repeated replacement model - Rapid climate change and population dynamics in Late Pleistocene Europe[J]. Quaternary International, 2010, 247: 38-49
doi: 10.1016/j.quaint.2010.10.015 URL |
[5] |
Mao XW, Zhang HC, Qiao SY, et al. The deep population history of northern East Asia from the Late Pleistocene to the Holocene[J]. Cell, 2021, 184(e13): 3256-3266
doi: 10.1016/j.cell.2021.04.040 URL |
[6] |
Green RE, Johannes K, Briggs AW, et al. A draft sequence of the Neandertal Genome[J]. Science, 2010, 328: 710-722
doi: 10.1126/science.1188021 pmid: 20448178 |
[7] |
Fu QM, Hajdinjak M, Moldovan OT, et al. An early modern human from Romania with a recent Neanderthal ancestor[J]. Nature, 2015, 524: 216-219
doi: 10.1038/nature14558 |
[8] |
Haak W, Lazaridis I, Patterson N, et al. Massive migration from the steppe was a source for Indo-European languages in Europe[J]. Nature, 2015, 522: 207-211
doi: 10.1038/nature14317 |
[9] |
Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual[J]. Science, 2012, 338: 222-226
doi: 10.1126/science.1224344 pmid: 22936568 |
[10] |
Rasmussen M, Li YR, Lindgreen S, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo[J]. Nature, 2010, 463: 757-762
doi: 10.1038/nature08835 |
[11] |
Reich D, Green RE, Kircher M, et al. Genetic history of an archaic hominin group from Denisova cave in Siberia[J]. Nature, 2010, 468: 1053-1060
doi: 10.1038/nature09710 |
[12] |
Liu YC, Mao XW, Johannes K, et al. Insights into human evolution from the first decade of ancient human genomics[J]. Science, 2021, 373: 1479-1484
doi: 10.1126/science.abi8202 URL |
[13] |
Yang MA, Fan XC, Sun B, et al. Ancient DNA indicates human population shifts and admixture in northern and southern China[J]. Science, 2020, 369: 282-288
doi: 10.1126/science.aba0909 pmid: 32409524 |
[14] |
Grün R, Stringer C, McDermott F, et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul[J]. Journal of Human Evolution, 2005, 49: 316-334
pmid: 15970310 |
[15] |
Liu W, Martinon-Torres M, Cai YJ, et al. The earliest unequivocally modern humans in southern China[J]. Nature, 2015, 526: 696-699
doi: 10.1038/nature15696 |
[16] | Mercier N, Valladas H, Bar-Yosef O, et al. Thermoluminescence date for the Mousterian burial site of Es-Skhul, Mt. Carmel[J]. Academic Press, 1993, 20: 169-174 |
[17] |
Fu QM, Li H, Moorjani P, et al. Genome sequence of a 45,000-year-old modern human from western Siberia[J]. Nature, 2014, 514: 445-449
doi: 10.1038/nature13810 |
[18] | Prufer K, Posth C, Yu H, et al. A genome sequence from a modern human skull over 45,000 years old from Zlaty kun in Czechia[J]. Nature Ecology & Evolution, 2021, 5: 820-825 |
[19] |
Hajdinjak M, Mafessoni F, Skov L, et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry[J]. Nature, 2021, 592: 253-257
doi: 10.1038/s41586-021-03335-3 |
[20] |
Fu QM, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan cave, China[J]. Proceedings of the National Academy of Sciences, 2013, 110: 2223-2227
doi: 10.1073/pnas.1221359110 URL |
[21] |
Shang H, Tong HW, Zhang SQ, et al. An early modern human from Tianyuan cave, Zhoukoudian, China[J]. Proceedings of the National Academy of Sciences, 2007, 104: 6573-6578
doi: 10.1073/pnas.0702169104 URL |
[22] |
Yang MA, Gao X, Theunert C, et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia[J]. Current Biology, 2017, 27: 3202-3208.e9
doi: S0960-9822(17)31195-8 pmid: 29033327 |
[23] |
Skoglund P, Mallick S, Bortolini MC, et al. Genetic evidence for two founding populations of the Americas[J]. Nature, 2015, 525: 104-108
doi: 10.1038/nature14895 |
[24] |
Fu QM, Posth C, Hajdinjak M, et al. The genetic history of Ice Age Europe[J]. Nature, 2016, 534: 200-205
doi: 10.1038/nature17993 |
[25] |
Seguin-Orlando A, Korneliussen TS, Sikora M, et al. Genomic structure in Europeans dating back at least 36,200 years[J]. Science, 2014, 346: 1113-1118
doi: 10.1126/science.aaa0114 pmid: 25378462 |
[26] |
Sikora M, Seguin-Orlando A, Sousa VC, et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers[J]. Science, 2017, 358: 659-662
doi: 10.1126/science.aao1807 pmid: 28982795 |
[27] |
Roach JC, Glusman G, Smit AF, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing[J]. Science, 2010, 328: 636-639
doi: 10.1126/science.1186802 pmid: 20220176 |
[28] | Scally A. The mutation rate in human evolution and demographic inference[J]. Current Opinion in Genetics & Development, 2016, 41: 36-43 |
[29] |
Scally A, Durbin R. Revising the human mutation rate: implications for understanding human evolution[J]. Nature Reviews Genetics, 2012, 13: 745-753
doi: 10.1038/nrg3295 pmid: 22965354 |
[30] |
Gravel S, Henn BM, Gutenkunst RN, et al. Demographic history and rare allele sharing among human populations[J]. Proceedings of the National Academy of Sciences, 2011, 108: 11983-11988
doi: 10.1073/pnas.1019276108 URL |
[31] |
Gutenkunst RN, Hernandez RD, Williamson SH, et al. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data[J]. PLOS Genetics, 2009, 5: e1000695
doi: 10.1371/journal.pgen.1000695 URL |
[32] |
Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences[J]. Nature Genetics, 2014, 46: 919-925
doi: 10.1038/ng.3015 pmid: 24952747 |
[33] |
Raghavan M, Skoglund P, Graf KE, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans[J]. Nature, 2014, 505: 87-91
doi: 10.1038/nature12736 |
[34] |
Lipson M, Reich D. A working model of the deep relationships of diverse modern human genetic lineages outside of Africa[J]. Molecular Biology and Evolution, 2017, 34: 889-902
doi: 10.1093/molbev/msw293 pmid: 28074030 |
[35] |
Massilani D, Skov L, Hajdinjak M, et al. Denisovan ancestry and population history of early East Asians[J]. Science, 2020, 370: 579-583
doi: 10.1126/science.abc1166 pmid: 33122380 |
[36] |
Lazaridis I, Patterson N, Mittnik A, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans[J]. Nature, 2014, 513: 409-413
doi: 10.1038/nature13673 |
[37] |
Lazaridis I, Nadel D, Rollefson G, et al. Genomic insights into the origin of farming in the ancient Near East[J]. Nature, 2016, 536: 419-424
doi: 10.1038/nature19310 |
[38] |
Wall JD, Yang MA, Flora J, et al. Higher levels of Neanderthal ancestry in East Asians than in Europeans[J]. Genetics, 2013, 194: 199-209
doi: 10.1534/genetics.112.148213 pmid: 23410836 |
[39] |
Vernot B, Akey JM. Complex history of admixture between modern humans and Neandertals[J]. The American Journal of Human Genetics, 2015, 96: 448-453
doi: 10.1016/j.ajhg.2015.01.006 URL |
[40] |
Siska V, Jones ER, Jeon S, et al. Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago[J]. Science Advances, 2017, 3: e1601877
doi: 10.1126/sciadv.1601877 URL |
[41] |
Kilinc GM, Kashuba N, Koptekin D, et al. Human population dynamics and Yersinia pestis in ancient northeast Asia[J]. Science Advances, 2021, 7: eabc4587
doi: 10.1126/sciadv.abc4587 URL |
[42] |
Yu H, Spyrou MA, Karapetian M, et al. Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia[J]. Cell, 2020, 181: 1232-1245.e20
doi: S0092-8674(20)30502-X pmid: 32437661 |
[43] | Zhang M, Fu QM. Human evolutionary history in Eastern Eurasia using insights from ancient DNA[J]. Current Opinion in Genetics & Development, 2020, 62: 78-84 |
[44] |
McColl H, Racimo F, Vinner L, et al. The prehistoric peopling of Southeast Asia[J]. Science, 2018, 361: 88-92
doi: 10.1126/science.aat3628 pmid: 29976827 |
[45] |
Damgaard PD, Martiniano R, Kamm J, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia[J]. Science, 2018, 360: eaar7711
doi: 10.1126/science.aar7711 URL |
[46] |
Jones ER, Gonzalez-Fortes G, Connell S, et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians[J]. Nature Communications, 2015, 6: 8912
doi: 10.1038/ncomms9912 pmid: 26567969 |
[47] |
Wang TY, Wang W, Xie GM, et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago[J]. Cell, 2021, 184(e21): 3829-3841
doi: 10.1016/j.cell.2021.05.018 URL |
[48] |
Yang MA, Fu QM. Insights into modern human prehistory using ancient genomes[J]. Trends in genetics, 2018, 34: 184-196
doi: S0168-9525(17)30210-X pmid: 29395378 |
[49] |
Ning C, Li TJ, Wang K, et al. Ancient genomes from northern China suggest links between subsistence changes and human migration[J]. Nature Communications, 2020, 11: 2700
doi: 10.1038/s41467-020-16557-2 pmid: 32483115 |
[50] |
Wang CC, Ye HY, Popov AN, et al. Genomic insights into the formation of human populations in East Asia[J]. Nature, 2021, 591: 413-419
doi: 10.1038/s41586-021-03336-2 |
[51] |
Willerslev E, Meltzer DJ. Peopling of the Americas as inferred from ancient genomics[J]. Nature, 2021, 594: 356-364
doi: 10.1038/s41586-021-03499-y |
[1] | 王法岗, 杨石霞, 葛俊逸, 岳健平, 赵克良, Andreu Ollé, 李文艳, 杨海勇, 刘连强, 关莹, 谢飞, Francesco d’Errico, Michael Petraglia, 邓成龙. 泥河湾盆地下马碑遗址2013年发掘简报[J]. 人类学学报, 2024, 43(01): 143-156. |
[2] | 张咸鹏, 温有锋, 李文慧, 李欣, 曲泉颖, 徐国昌. 中国阿尔泰语系人群头面部的表型特征[J]. 人类学学报, 2023, 42(03): 342-358. |
[3] | 杜抱朴, 殷钰喆, 谭伊, 张宇格, 范博, 姚植正, 郭航. 中国现代人群两性身高差异分布及其影响因素[J]. 人类学学报, 2023, 42(02): 191-200. |
[4] | 孙晓璠, 张全超, 牟萍媛, 杨及耘, 曹俊. 山西洪洞西冯堡清代墓地缠足女性的骨骼损伤和关节疾病[J]. 人类学学报, 2023, 42(02): 201-213. |
[5] | 邢松. 现代人出现和演化的化石证据[J]. 人类学学报, 2022, 41(06): 1069-1082. |
[6] | 李浩. 探究早期现代人的南方扩散路线[J]. 人类学学报, 2022, 41(04): 630-648. |
[7] | 杨石霞, 许竞文, 浣发祥. 古人类对赭石的利用行为在其演化中的意义[J]. 人类学学报, 2022, 41(04): 649-658. |
[8] | 刘武, 惠家明, 何嘉宁, 吴秀杰. 门齿孔位置在中国古人类化石与现代人群的表现及其演化意义[J]. 人类学学报, 2021, 40(05): 739-750. |
[9] | 曹家望, 燕君, 李黎明, 乔辉, 孙畅, 文少卿, 谭婧泽. 基于三维人脸模型及人工测量数据分析现代中国人群面部表型的性别差异[J]. 人类学学报, 2021, 40(04): 664-678. |
[10] | 杜抱朴, 杜靖. 中国现代人群上、下肢形态与环境温度的相关性分析[J]. 人类学学报, 2021, 40(04): 644-652. |
[11] | 丁曼雨, 何伟, 王恬怡, 夏格旺堆, 张明, 曹鹏, 刘峰, 戴情燕, 付巧妹. 中国西藏拉托唐古墓地古代居民线粒体全基因组研究[J]. 人类学学报, 2021, 40(01): 1-11. |
[12] | 崔哲慜, 高星, 夏文婷, 钟巍. 晚更新世东北亚现代人迁移与交流范围的初步研究[J]. 人类学学报, 2021, 40(01): 12-27. |
[13] | 王恬怡, 赵东月, 张明, 乔诗雨, 杨帆, 万杨, 杨若薇, 曹鹏, 刘峰, 付巧妹. 古DNA捕获新技术与中国南方早期人群遗传研究新格局[J]. 人类学学报, 2020, 39(04): 680-694. |
[14] | 张亚盟. 枕骨三维形态在现生人群间的变异[J]. 人类学学报, 2020, 39(04): 648-658. |
[15] | 赵静, 王传超. 古DNA提取技术对比及概述[J]. 人类学学报, 2020, 39(04): 706-716. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||