人类学学报 ›› 2024, Vol. 43 ›› Issue (02): 331-343.doi: 10.16359/j.1000-3193/AAS.2023.0061
许竞文1,2,3(), 浣发祥1,2,3, 杨石霞1,2()
收稿日期:
2023-02-27
修回日期:
2023-05-26
出版日期:
2024-04-15
发布日期:
2024-04-02
通讯作者:
杨石霞,副研究员,主要从事旧石器时代考古学和人类行为演化研究。E-mail: 作者简介:
许竞文,硕士研究生,主要研究方向为古生物学与地层学。E-mail: xujingwen@ivpp.ac.cn
基金资助:
XU Jingwen1,2,3(), HUAN Faxiang1,2,3, YANG Shixia1,2()
Received:
2023-02-27
Revised:
2023-05-26
Online:
2024-04-15
Published:
2024-04-02
摘要:
赭石是考古发现中一类较为常见的矿物颜料。遗址中的矿物颜料研究对于解读中更新世以来人类行为的演化与发展以及人群的迁徙和交流互动具有重要意义。目前,我国出土和被识别的赭石相关考古发现日益增多,但研究程度还有待深入,旧石器时代考古发现中相关材料的识别和解读较为有限。如何综合利用多学科测试分析方法建立起完善的研究方案,深度挖掘赭石颜料利用所指示的人类行为发展模式和民族学意义,还需要我们进行系统性地总结和思考。因此,本文通过梳理现有的考古学、地球物理、地球化学和民族学等各领域的国内外研究成果,归纳了旧石器时代考古遗址中出土的赭石及相关遗物的主要研究内容——成分定性、产地溯源和加工技术分析,以及各自适用的分析方法。综合多项研究案例,我们认为在性质、产地和技术分析的基础上,需要结合民族学方法、生态环境背景才能更有效地解读和复原史前人类的行为模式及社会学、民族学意义。
中图分类号:
许竞文, 浣发祥, 杨石霞. 旧石器时代考古中出土的赭石及相关遗物的研究方法[J]. 人类学学报, 2024, 43(02): 331-343.
XU Jingwen, HUAN Faxiang, YANG Shixia. Analysis methods on Paleolithic age archaeological remains of ochre using[J]. Acta Anthropologica Sinica, 2024, 43(02): 331-343.
图1 遗址中所应用的各种赭石成分分析(a)、产源分析(b)方法类型统计 Raman—拉曼光谱Raman spectrum;XRD—X射线衍射X-ray diffraction;IR—红外光谱infrared spectroscopy;PLM—偏光显微镜polarized light microscopy;TEM—透射电子显微镜transmission electron microscope;UV-Vis—紫外-可见分光光度法ultraviolet-visible spectrophotometry;XANES—X射线吸收近边结构光谱X-ray absorption near edge spectrum;SEM-EDS—扫描电镜能谱分析scanning electron microscope-energy dispersive spectroscopy;XRF—X射线荧光光谱分析X-ray fluorescence;ICP-MS/ ICP-OES—电感耦合等离子体质谱inductively coupled plasma-mass spectrometry/ inductively coupled plasma optical emission spectrometer; NAA—中子活化分析neutron activation analysis;EPMA—电子探针显微分析electro-probe micro-analysis;PIXE—质子激发X荧光光谱分析法particle induced X-ray emission;LA-ICPMS—激光剥蚀-电感耦合等离子体质谱仪laser ablation inductively coupled plasma mass;AAS—原子吸收光谱;LIBS—激光诱导击穿光谱仪;Rock Magnetism—岩石磁学
Fig.1 Statistical analysis of the methods of ochre physicochemical analysis(a), provenance analysis(b) applied in the sites
图2 在Dalakngalarr 1遗址上所采集的颜料碎屑样品及其测试分析谱图 用于Dalakngalarr 1岩画上黄色颜料(A)、红色颜料(B)和紫色颜料(C)的扫描电镜能谱分析(A1, B1,C1)与拉曼光谱分析(A2,B2, C2),修改自文献 [63] 。SEM-EDS (A1, B1, C1) and Raman (A2, B2, C2) spectroscopy used on yellow pigments (A), red pigments (B) and purple pigments (C) of rock art at the Dalakngalarr 1 site(see details in reference [63])
Fig.2 Samples of pigment fragments collected at the Dalakngalarr 1 site
图3 遗址中的赭石使用功能分析的方法类型统计 OM—光学显微镜optical microscope;SEM—电子显微镜scanning electron microscope;μ-Raman—微区拉曼光谱micro-Raman spectrum;SEM-EDS—扫描电镜能谱分析scanning electron microscope-energy dispersive spectroscopy;XRF—X射线荧光光谱分析X-ray fluorescence;XRD—X射线衍射X-ray diffraction;GC-MS—气相色谱-质谱联用仪gas chromatography-mass spectrometry;IR—红外光谱infrared spectroscopy;Rock Magnetism—岩石磁学;UV-Vis—紫外-可见分光光度法ultraviolet-visible spectrophotometry;PIXE—质子激发X荧光光谱分析法particle induced X-ray emission;LA-ICPMS—激光剥蚀-电感耦合等离子体质谱仪laser ablation inductively coupled plasma mass Spectrum;XANES—X射线吸收近边结构分析X-ray absorption near edge spectrum;TEM—透射式电子显微镜transmission electron microscope
Fig.3 Statistical analysis of the methods of ochre physicochemical analysis(a), provenance analysis(b) applied in the sites
[1] |
Foley RA, Martin L, Lahr MM, et al. Major transitions in human evolution[J]. Philosophical Transactions of the Royal Society B, 2016, 371: 20150229
doi: 10.1098/rstb.2015.0229 URL |
[2] | Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses[M]. Wiley-VCH. 2003 |
[3] | Nicola M, Mastrippolito C, Masic A. Iron Oxide-Based pigment and their use in history[A]. In Faivre D. Iron oxide: from nature to applications[C]. New Jersey: Wiley Press. 2016: 544-566 |
[4] |
Watts I, Chazan M, Wilkins J. Early evidence for brilliant ritualized display: specularite use in the Northern Cape (South Africa) between similar to 500 and similar to 300 Ka[J]. Current Anthropology, 2016, 57(3): 287-310
doi: 10.1086/686484 URL |
[5] |
Brooks AS, Yellen JE, Potts Richard, et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age[J]. Science, 2018, 360(6384): 90-94
doi: 10.1126/science.aao2646 pmid: 29545508 |
[6] | 杨石霞, 许竞文, 浣发祥. 古人类对赭石的利用行为在其演化中的意义[J]. 人类学学报, 2022, 41(4): 649-658 |
[7] |
Barham LS. Systematic pigment use in the Middle Pleistocene of South-Central Africa[J]. Current Anthropology, 2002, 43(1): 181-190
doi: 10.1086/338292 URL |
[8] | 周玉端, 翟天民, 李桓. 旧石器时代人类对赭石的利用[J]. 江汉考古, 2017(2): 43-51 |
[9] | 申艳茹. 中国旧石器时代遗址中赭石的功能[J]. 南方文物, 2020(1): 187-192 |
[10] |
D’Errico F, Moreno RC, Rifkin RF. Technological, elemental and colorimetric analysis of an engraved ochre fragment from the Middle Stone Age levels of Klasies River Cave 1, South Africa[J]. Journal of Archaeological Science, 2012, 39(4): 942-952
doi: 10.1016/j.jas.2011.10.032 URL |
[11] |
Velliky EC, Porr M, Conard NJ. Ochre and pigment use at Hohle Fels cave: results of the first systematic review of ochre and ochre-related artefacts from the Upper Palaeolithic in Germany[J]. PLoS One, 2018, 13(12): e0209874
doi: 10.1371/journal.pone.0209874 URL |
[12] |
D'Errico F, Pitarch Martí A, Wei Y. Zhoukoudian Upper Cave personal ornaments and ochre: rediscovery and reevaluation[J]. Journal of human evolution, 2021, 161: 103088
doi: 10.1016/j.jhevol.2021.103088 URL |
[13] |
Wang FG, Yang SX, Ge JY, et al. Innovative ochre processing and tool use in China 40,000 years ago[J]. Nature, 2022, 603(7900): 284-289
doi: 10.1038/s41586-022-04445-2 |
[14] |
Marean CW, Bar-Matthews M, Bernatchez J, et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene[J]. Nature, 2007, 449(7164): 905-908
doi: 10.1038/nature06204 |
[15] |
Cuenca-Solana D, Gutiérrez-Zugasti I, Ruiz-Redondo A, et al. Painting Altamira Cave? Shell tools for ochre-processing in the Upper Palaeolithic in northern Iberia[J]. Journal of Archaeological Science, 2016, 74: 135-151
doi: 10.1016/j.jas.2016.07.018 URL |
[16] | Pitarch Martí A, Zilhão J, d’Errico F, et al. The symbolic role of the underground world among Middle Paleolithic Neanderthals[J]. Proceedings of the National Academy of Sciences, 2021, 118: 33 |
[17] |
Bar-Yosef Mayer DE, Vandermeersch B, Bar-Yosef O. Shells and ochre in Middle Paleolithic Qafzeh Cave, Israel: indications for modern behavior[J]. Journal of Human Evolution, 2009, 56(3): 307-314
doi: 10.1016/j.jhevol.2008.10.005 pmid: 19285591 |
[18] | Song YH, Cohen DJ, Shi JM. Diachronic change in the utilization of Ostrich Eggshell at the Late Paleolithic Shizitan Site, North China[J]. Frontiers in Earth Science, 2022 |
[19] |
Aldhouse-Green S, Pettitt P. Paviland Cave: contextualizing the ‘Red Lady’[J]. Antiquity, 1998, 72(278): 756-772
doi: 10.1017/S0003598X00087354 URL |
[20] |
Trinkets E, Buzhilova AP. The death and burial of sunghir 1[J]. International Journal of Osteoarchaeology, 2010, 22(6): 655-666
doi: 10.1002/oa.v22.6 URL |
[21] |
Vanhaeren M, d’Errico F, Stringer C, et al. Middle Paleolithic shell beads in Israel and Algeria[J]. Science, 2006, 312(5781): 1785-1788
pmid: 16794076 |
[22] | Bouzouggar A, Barton N, Vanhaeren M, et al. 82,000-year-old shell beads from North Africa and implications for the origins of modern human behavior[J]. Anthropology, 2007, 104(24):9964-9969 |
[23] |
Wadley L, Hodgskiss T, Grant M. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa[J]. Proceedings of the National Academy of Sciences, 2009, 106(24): 9590-9594
doi: 10.1073/pnas.0900957106 URL |
[24] |
Wojcieszak M, Wadley L. Raman spectroscopy and scanning electron microscopy confirm ochre residues on 71000-year-old bifacial tools from Sibudu, South Africa[J]. Archaeometry, 2018, 60(5): 1062-1076
doi: 10.1111/arcm.v60.5 URL |
[25] |
Villa P, Pollarolo L, Degano I, et al. A milk and ochre paint mixture used 49,000 years ago at Sibudu, South Africa[J]. PLoS One, 2015, 10(6): e0131273
doi: 10.1371/journal.pone.0131273 URL |
[26] |
Zhang Y, Doyon L, Peng F, et al. An Upper Paleolithic perforated red deer canine with geometric engravings from QG10, Ningxia, Northwest China[J]. Frontiers in Earth Science, 2022, 10:814761
doi: 10.3389/feart.2022.814761 URL |
[27] |
Dayet L, d’Errico F, García-Diez M, et al. Critical evaluation of in situ analyses for the characterisation of red pigments in rock paintings: a case study from El Castillo, Spain[J]. PLoS One, 2022, 17(1): e0262143
doi: 10.1371/journal.pone.0262143 URL |
[28] |
Kurniawan R, Kadja GTM, Setiawan P, et al. Chemistry of prehistoric rock art pigments from the Indonesian island of Sulawesi[J]. Microchemical Journal, 2019, 146: 227-233
doi: 10.1016/j.microc.2019.01.001 |
[29] |
Dayet L, d’ Errico F, Garcia-Moreno R. Searching for consistencies in Châtelperronian pigment use[J]. Journal of Archaeological Science, 2014, 44: 180-193
doi: 10.1016/j.jas.2014.01.032 URL |
[30] |
Maryanti E, Ilmi MM, Nurdini N, et al. Hematite as unprecedented black rock art pigment in Jufri Cave, East Kalimantan, Indonesia: the microscopy, spectroscopy, and synchrotron X-ray-based investigation[J]. Archaeological and Anthropological Sciences, 2022, 14: 122
doi: 10.1007/s12520-022-01591-6 |
[31] |
Rifkin RF, Prinsloo LC, Dayet L, et al. Charaterising pigments on 30 000-year-old portable art from Apollo 11 Cave, Karas Region, southern Namibia[J]. Journal of Archaeological Science: Reports, 2016, 5: 336-347
doi: 10.1016/j.jasrep.2015.11.028 URL |
[32] | Gomes H, Martins AA, Nash G, et al. Pigment in western Iberian schematic rock art: An analytical approach[J]. Mediterranean Archaeology and Archaeometry, 2015, 15(1) |
[33] |
Rigon C, Izzo FC, Pascual MLVDÁ, et al. New results in ancient Maya rituals researches: The study of human painted bones fragments from Calakmul archaeological site (Mexico)[J]. Journal of Archaeological Science: Reports, 2020, 32: 102418
doi: 10.1016/j.jasrep.2020.102418 URL |
[34] |
Hodgskiss T, Wadley L. How people used ochre at Rose Cottage Cave, South Africa: Sixty thousand years of evidence from the Middle Stone Age[J]. PLoS One, 2017, 12(4): e0176317
doi: 10.1371/journal.pone.0176317 URL |
[35] |
Huntley J, Aubert M, Ross J, et al. One colour, (at least) two minerals: a study of mulberry rock art pigment and a mulberry pigment ‘quarry’ from the Kimberley, Northern Australia[J]. Archaeometry, 2015, 57(1): 77-99
doi: 10.1111/arcm.2015.57.issue-1 URL |
[36] | Behera PK, Thakur N. Late Middle Palaeolithic Red Ochre Use at Torajunga, an Open-Air Site in the Bargarh Upland, Odisha, India: Evidence for Long Distance Contact and Advanced Cognition[J]. Heritage: Journal of Multidisciplinary Studies in Archaeology, 2018, 6: 129-147 |
[37] |
Dayet L, Le Bourdonnec FX, Daniel F, et al. Ochre provenance and procurement strategies during the Middle Stone Age at Diepkloof Rock Shelter, South Africa[J]. Archaeometry, 2015, 58(5): 807-829
doi: 10.1111/arcm.v58.5 URL |
[38] |
Iriarte E, Foyo A, Sánchez MA, et al. The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo Caves (Northern Spain)[J]. Archaeometry, 2009, 51(2): 231-251
doi: 10.1111/arch.2009.51.issue-2 URL |
[39] |
Moyo S, Mphuthi D, Cukrowska E, et al. Blombos Cave: Middle Stone Age ochre differentiation through FTIR, ICP OES, ED XRF and XRD[J]. Quaternary International, 2016, 404: 20-29
doi: 10.1016/j.quaint.2015.09.041 URL |
[40] |
Hovers E, Ilani Shimon, Bar-Yosef O, et al. An Early Case of Color Symbolism: Ochre Use by Modern Humans in Qafzeh Cave[J]. Current Anthropology, 2003, 44(4): 491-522
doi: 10.1086/375869 URL |
[41] |
Dayet Bouillot L, Wurz S, Daniel F. Ochre resources, behavioural complexity and regional patterns in the Howiesons Poort: new insights from Klasies River main site, South Africa[J]. Journal of African Archaeology, 2017, 15(1): 20-41
doi: 10.1163/21915784-12340002 URL |
[42] |
Velliky EC, MacDonald BL, Porr M, et al. First large-scale provenance study of pigments reveals new complex behavioural patterns during the Upper Palaeolithic of south-western Germany[J]. Archaeometry, 2021, 63(1): 173-193
doi: 10.1111/arcm.v63.1 URL |
[43] |
Cavallo G, Fontana F, Gonzato F, et al. Sourcing and processing of ochre during the late upper Palaeolithic at Tagliente rock-shelter (NE Italy) based on conventional X-ray powder diffraction analysis[J]. Archaeological and Anthropological Sciences, 2017, 9: 763-775
doi: 10.1007/s12520-015-0299-3 URL |
[44] |
Darchuk L, Tsybrii Z, Worobiec A, et al. Argentinean prehistoric pigments’ study by combined SEM/EDX and molecular spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(5): 1398-1402
doi: 10.1016/j.saa.2010.01.006 URL |
[45] |
Charrié-Duhaut A, Porraz G, Cartwright C, et al. First molecular identification of a hafting adhesive in the Late Howiesons Poort at Diepkloof Rock Shelter (Western Cape, South Africa)[J]. Journal of Archaeological Science, 2012, 40(9): 3506-3518
doi: 10.1016/j.jas.2012.12.026 URL |
[46] |
Dayet L, Texier PJ, Daniel F, et al. Ochre resources from the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa[J]. Journal of Archaeological Science, 2013, 40: 3492-3505
doi: 10.1016/j.jas.2013.01.025 URL |
[47] |
Mortimore JL, Marshall LJR, Almond MJ, et al. Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2004, 60(5): 1179-1188
doi: 10.1016/j.saa.2003.08.002 URL |
[48] |
Henshilwood CS, d’Errico F, van Niekerk KL, et al. An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa[J]. Nature, 2018, 562: 115-118
doi: 10.1038/s41586-018-0514-3 |
[49] |
D’Errico F, Vanhaeren M, van Niekerk K, et al. Assessing the accidental versus deliberate colour modification of shell beads: a case study on perforated Nassarius kraussianus from Blombos Cave Middle Stone Age levels[J]. . Archaeometry, 57(1): 51-76
doi: 10.1111/arcm.2015.57.issue-1 URL |
[50] |
Henshilwood CS, d’Errico F, van Niekerk KL, et al. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa[J]. Science, 2011, 334(6053): 219-222
doi: 10.1126/science.1211535 pmid: 21998386 |
[51] |
Dayet L, Erasmus RM, Val A, et al. Beads, pigments and early Holocene ornamental traditions at Bushman Rock Shelter, South Africa[J]. Journal of Archaeological Science: Reports, 2017, 13(24): 635-651
doi: 10.1016/j.jasrep.2017.05.015 URL |
[52] |
Langley MC, O’Connor S, Piotto E. 42,000-year-old worked and pigment-stained Nautilus shell from Jerimalai (Timor-Leste): Evidence for an early coastal adaptation in ISEA[J]. Journal of Human Evolution, 2016, 97: 1-16
doi: 10.1016/j.jhevol.2016.04.005 pmid: 27457541 |
[53] |
Peresani M, Vanhaeren M, Quaggiotto E, et al. An Ochered Fossil Marine Shell From the Mousterian of Fumane Cave, Italy[J]. PLoS One, 2013, 8(7): e68572
doi: 10.1371/journal.pone.0068572 URL |
[54] | Cortés-Sánchez M, Riquelme-Cantal JA, Simón-Vallejo MD, et al. Pre-Solutrean rock art in southernmost Europe: Evidence from Las Ventanas Cave (Andalusia, Spain)[J]. PLoS One 13(10): e0204651. |
[55] |
Pitarch Martí A, Wei Y, Gao X, et al. The earliest evidence of coloured ornaments in China: The ochred ostrich eggshell beads from Shuidonggou Locality 2[J]. Journal of Anthropological Archaeology, 2017, 48(1): 102-113
doi: 10.1016/j.jaa.2017.07.002 URL |
[56] |
Li ZY, Doyon L, Li H, et al. Engraved bones from the archaic hominin site of Lingjing, Henan Province[J]. Antiquity, 2019, 93(370): 886-900
doi: 10.15184/aqy.2019.81 |
[57] | Pitarch Martí A, Zilhão J, Muñoz J R, et al. Geochemical characterization of the earliest Palaeolithic paintings from southwestern Europe: Ardales Cave, Spain[R]. The Art of Prehistoric Societies, VI Internacional Doctoral and Postdoctoral Meeting, 2019 |
[58] | Ward I, Watchman A L, Cole N, et al. Identification of minerals in pigments from aboriginal rock art in the Laura and Kimberley regions, Australia[J]. Rock Art Research, 2001, 18(1): 15-23 |
[59] |
D’Errico F, Salomon H, Vjgnaud C, et al. Pigments from the Middle Palaeolithic levels of Es-Skhul (Mount Carmel, Israel)[J]. Journal of Archaeological Science, 2010, 37(12): 3099-3110
doi: 10.1016/j.jas.2010.07.011 URL |
[60] |
Salomon H, Vignaud C, Lahlil S, et al. Solutrean and Magdalenian ferruginous rocks heat-treatment: acciental and/or deliberate action[J]. Journal of Archaeological Science, 2015, 55: 100-112
doi: 10.1016/j.jas.2014.12.024 URL |
[61] |
Gialanella S, Belli R, Dalmeri G, et al. Artificial or natural origin of hematite-based red pigments in archaeological contexts: the case of Riparo Dalmeri(Ternto, Italy)[J]. Archaeometry, 2011, 53(5): 950-962
doi: 10.1111/arcm.2011.53.issue-5 URL |
[62] |
Cavallo G, Fontana F, Gonzato F, et al. Textural, microstructural, and compositional characteristics of Fe-based geomaterials and Upper Paleolithic ocher in the Northeast Italy: implications for provenance studies[J]. Geoarchaeology, 2017, 32(4): 437-455
doi: 10.1002/gea.2017.32.issue-4 URL |
[63] |
Hunt A, Thomas P, James D, et al. The characterisation of pigments used in X-ray rock art at Dalakngalarr 1, central-western Arnhem Land[J]. Microchemical Journal, 2016, 126: 524-529
doi: 10.1016/j.microc.2016.01.016 URL |
[64] |
De Faria DLA, Venâncio Silva S, Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. Journal of Raman Spectroscopy, 1997, 28(11): 873-878
doi: 10.1002/(ISSN)1097-4555 URL |
[65] |
Bersani D, Lottici PP, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses[J]. Journal of Raman Spectroscopy, 1999, 30(5): 355-360
doi: 10.1002/(ISSN)1097-4555 URL |
[66] |
Needham A, Croft S, Kröger R, et al. The application of micro-Raman for the analysis of ochre artefacts from Mesolithic palaeo-lake Flixton[J]. Journal of Archaeological Science: Reports, 2018, 17: 650-656
doi: 10.1016/j.jasrep.2017.12.002 URL |
[67] |
Stuart BH, Thomas PS. Pigment characterisation in Australian rock art: a review of modern instrumental methods of analysis[J]. Heritage Science, 2017, 5: 10
doi: 10.1186/s40494-017-0123-8 URL |
[68] |
Wojcieszak M, Wadley L. A Raman micro-spectroscopy study of 77,000 to 71,000 year old ochre processing tools from Sibudu, KwaZulu-Natal, South Africa[J]. Heritage Science, 2019, 7: 24
doi: 10.1186/s40494-019-0267-9 |
[69] | Texier PJ, Porraz G, Parkington J, et al. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa[J]. Anthropology, 2010, 107(14): 6180-6185 |
[70] |
Rosso DE, d’ Errico F, Queffelec A. Patterns of change and continuity in ochre use during the late Middle Stone Age of the Horn of Africa: The Porc-Epic Cave record[J]. PLoS One, 2017, 12(5): e0177298
doi: 10.1371/journal.pone.0177298 URL |
[71] |
Lofrumento C, Ricci M, Bachechi L, et al. The first spectroscopic analysis of Ethiopian prehistoric rock painting[J]. Journal of Raman Spectroscopy, 2011, 43(6): 809-816
doi: 10.1002/jrs.v43.6 URL |
[72] | 刘青松, 邓成龙, 潘永信. 磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J]. 第四纪研究, 2007, 27(6): 955-962 |
[73] | Stacey FD, Banerjee SK. The physical principles of rock magnetism[M]. Amsterdam: Elsevier, 1974, 1-195 |
[74] |
Mooney SD, Geiss C, Smith MA. The use of mineral magnetic parameters to characterize archaeological ochres[J]. Journal of Archaeological Science, 2003, 30(5): 511-523
doi: 10.1016/S0305-4403(02)00181-4 URL |
[75] | McPherron SP. Lithics[M]. Richards MP, Britton K. Archaeological Science: an Introduction. Cambridge: Cambridge University Press. 2020: 387-404 |
[76] | 赵丛苍. 科技考古学概论[M]. 北京: 高等教育出版社, 2018: 291-359 |
[77] |
MacDonald BL, Hancock RGV, Cannon A, et al. Geochemical characterization of ochre from central coastal British Columbia, Canada[J]. Journal of Archaeological Science, 2011, 38(12): 3620-3630
doi: 10.1016/j.jas.2011.08.032 URL |
[78] |
MacDonald BL, Hancock RGV, Cannon A, et al. Elemental analysis of ochre outcrops in southern British Columbia, Canada[J]. Archaeometry, 2013, 55(6): 1020-1033
doi: 10.1111/arcm.2013.55.issue-6 URL |
[79] |
Popelka-Filcoff RS, Robertson JD, Glascock MD, et al. Trace element characterization of ochre from geological sources[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272(1): 17-27
doi: 10.1007/s10967-006-6836-x URL |
[80] |
Popelka-Filcoff RS, Miksa EJ, Robertson JD, et al. Elemental analysis and characterization of ochre sources from southern Arizona[J]. Journal of Archaeological Science, 2008, 35(3): 752-762
doi: 10.1016/j.jas.2007.05.018 URL |
[81] | 乔治 R, 克里斯托弗 LH.地质考古学:地球科学方法在考古学中的应用[M]. 译者:杨石霞,赵克良,李小强. 北京: 科学出版社, 2020 |
[82] | 伦福儒 C, 巴恩 P. 考古学:理论方法与实践[M]. 译者:陈淳. 第6版. 上海: 上海古籍出版社, 2015 |
[83] | 王德滋, 谢磊. 光性矿物学[M]. 北京: 科学出版社, 2008: 1-26 |
[84] |
Erlandson JM, Robertson JD, Descantes C. Geochemical analysis of eight red ochres from western North America[J]. American Antiquity, 1999, 64(3): 517-526
doi: 10.2307/2694149 URL |
[85] |
Jacobs Z, Roberts RG, Galbraith RF, et al. Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal[J]. Science, 2008, 322(5902): 733-735
doi: 10.1126/science.1162219 pmid: 18974351 |
[86] |
Chase BM. South African palaeoenvironments during marine oxygen isotope stage 4: a context for the Howiesons Poort and Still Bay industries[J]. Journal of Archaeological Science, 2010, 37(6): 1359-1366
doi: 10.1016/j.jas.2009.12.040 URL |
[87] |
Mackay A. Nature and significance of the Howiesons Poort to post-Howiesons Poort transition at Klein Kliphuis rockshelter, South Africa[J]. Journal of Archaeological Science, 2011, 38(7): 1430-1440
doi: 10.1016/j.jas.2011.02.006 URL |
[88] |
Porraz G, Texier PJ, Archer W, et al. Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa[J]. Journal of Archaeological Science, 2013, 40(9): 3376-3400
doi: 10.1016/j.jas.2013.02.012 URL |
[89] | Tobias PV. From tools to symbols: from early hominids to modern humans[M]. In:d’Errico F and Backwell L(eds). Johannesburg: Wits University Press, 2005 |
[90] | Rifkin RF. The symbolic and functional exploitation of ochre during the South African Middle Stone Age[M]. Johannesburg: Wits University Press, 2013 |
[91] |
Wreschner EE, Bolton R, Butzer KW, et al. Red ochre and human evolution: a case for discussion[J]. Current Anthropology, 1980, 21(5): 631-644
doi: 10.1086/202541 URL |
[92] |
Mcbrearty S, Brooks AS. The revolution that wasn't: a new interpretation of the origin of modern human behavior[J]. Journal of Human Evolution, 2000, 39(5): 453-563
pmid: 11102266 |
[93] | Keeley LH. Experimental determination of stone tool uses[M]. Chicago: The University of Chicago Press, 1980 |
[94] |
Rifkin RF. Processing ochre in the Middle Stone Age: testing the inference of prehistoric behaviours from actualistically derived experimental data[J]. Journal of Anthropological Archaeology, 2012, 31(2): 174-195
doi: 10.1016/j.jaa.2011.11.004 URL |
[95] | Hodgskiss T. Ochre use in the Middle Stone Age[J]. Oxford Research Encyclopedia of Anthropology, 2020 |
[96] |
Kozowyk PRB, Langejans GHJ, Poulis JA. Lap Shear and impact testing of ochre and beeswax in experimental Middle Stone Age compound adhesives[J]. PLoS One, 2016, 11(3): e0150436
doi: 10.1371/journal.pone.0150436 URL |
[97] |
Siddall R. Mineral pigments in archaeology: Their analysis and the range of available materials. Minerals, 2018, 8(5): 201
doi: 10.3390/min8050201 URL |
[98] |
Ismunandar, Nurdini N, Ilmi MM, et al. Investigation on the crystal structures of hematite pigments at different sintering temperatures[J]. Key Engineering Materials, 2021, 874: 20-27
doi: 10.4028/www.scientific.net/KEM.874 URL |
[99] | 靳桂云. 土壤微形态分析及其在考古学中的应用[J]. 地球科学进展, 1999, 14(2): 197-200 |
[100] | 张海, 庄奕杰, 方燕明, 等. 河南禹州瓦店遗址龙山文化壕沟的土壤微形态分析[J]. 华夏考古, 2016, 4: 86-95, I0009-I0014 |
[101] | 魏屹, d'Errico F, 高星. 旧石器时代装饰品研究:现状与意义[J]. 人类学学报, 2016, 35(1): 132-148 |
[102] | Klein RG. Out of Africa and the evolution of human behavior[J]. Evolutionary Anthropology: Issues, News, and Reviews, 2008, 17(6): 267-281 |
[103] | 黄淑娉, 龚佩华. 文化人类学理论方法研究(第3版)[M]. 广州: 广东高等教育出版社, 2004 |
[104] | 庄孔韶. 人类学通论[M]. 太原: 山西教育出版社, 2005 |
[105] |
Scott DA, Scheerer S, Reeves DJ. Technical examination of some rock art pigments and encrustations from the Chumash Indian site of San Emigdio, California[J]. Studies in Conservation, 2002, 47(3): 184-194
doi: 10.1179/sic.2002.47.3.184 URL |
[106] | D’Errico F, Vanhaeren M. Evolution or Revolution? New evidence for the origin of symbolic behaviour in and out of Africa[M]. Mellars P, Boyle K, Bar-Yosef O, et al. Rethinking the human revolution: new behavioural and biological perspectives on the origin and dispersal of modern humans[C]. Cambridge: McDonald Institute for Archaeological Research, 2007: 257-286 |
[107] |
Wang C, Lu HY, Zhang JP, et al. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years[J]. Quaternary Science Reviews, 2014, 98: 45-59
doi: 10.1016/j.quascirev.2014.05.015 URL |
[108] | Feng Y, Wang Y. The environmental and cultural contexts of early pottery in south China from the perspective of behavioral diversity in the Terminal Pleistocene[J]. Quaternary International, 2022, 608-609: 33-48 |
[109] |
Yang SX, Zhang YX, Li YQ, et al. Environmental change and raw material selection strategies at Taoshan: a terminal Late Pleistocene to Holocene site in north-eastern China[J]. Journal of Quaternary science, 2017, 32(5): 553-563
doi: 10.1002/jqs.v32.5 URL |
[110] |
Bae CJ, Douka K, Petraglia MD. On the origin of modern humans: Asian perspectives[J]. Science, 2017, 358(6368): eaai9067.
doi: 10.1126/science.aai9067 URL |
[111] | Rifkin RF. Ethnographic insight into the prehistoric significance of red ochre[J]. Digging stick, 2015, 32(2): 7-10 |
[112] | Huntley J. Australian Indigenous Ochres: Use, Sourcing, and Exchange[A]. In: Ian J, Bruno D(Eds). The Oxford Handbook of the Archaeology of Indigenous Australia and New Guinea[C]. Oxford University Press, 2018, 1-33 |
[1] | Evgeny P RYBIN, Arina M KHATSENOVICH. 旧石器时代晚期初段色楞格河人类的扩散路线[J]. 人类学学报, 2024, 43(05): 780-796. |
[2] | 高黄文, 刘颖杰, 陆成秋, 孙雪峰, 黄旭初, 徐静玥. 湖北郧阳包包岭遗址2021年发掘简报[J]. 人类学学报, 2024, 43(05): 828-838. |
[3] | 李欣, 姜帅, 黄婷, 钟华, 温有锋. 内蒙古与新疆达斡尔族头面部特征比较[J]. 人类学学报, 2024, 43(04): 586-596. |
[4] | 祝海歌, 乔辉, 杨晨, 管海娟, 张航, 文少卿, 夏斌, 谭婧泽. 中国汉族、回族、蒙古族、苗族和维吾尔族的牙齿形态[J]. 人类学学报, 2024, 43(04): 613-628. |
[5] | 肖培源, 阮齐军, 高玉, 贾真秀, 张明, 杨李靖, 刘建辉, 李三灵, 李浩. 2022年云南宾川盆地旧石器遗址调查报告[J]. 人类学学报, 2024, 43(03): 448-457. |
[6] | 曾浩然, 刘康康, 罗亚平. 指纹皱纹研究的现状及展望[J]. 人类学学报, 2024, 43(03): 518-528. |
[7] | Hiroyuki SATO, Kazuki MORISAKI. 日本旧石器晚期石器技术起源的新考古学与人类学证据[J]. 人类学学报, 2024, 43(03): 470-487. |
[8] | 王华, 李占扬, Thijs van KOLFSCHOTEN. 德国西宁根与中国灵井的骨器比较[J]. 人类学学报, 2024, 43(02): 214-232. |
[9] | 赵清坡, 马欢欢. 河南灵宝旧石器考古调查报告[J]. 人类学学报, 2024, 43(02): 321-330. |
[10] | 高星, 张月书, 李锋, 陈福友, 王晓敏, 仪明洁. 泥河湾盆地东谷坨遗址2016-2019年发掘简报[J]. 人类学学报, 2024, 43(01): 106-121. |
[11] | 赵云啸, 仝广, 涂华, 赵海龙. 河北省泥河湾盆地石沟遗址C区发掘简报[J]. 人类学学报, 2024, 43(01): 122-131. |
[12] | 周士航, 何湘栋, 徐静玥, 李潇丽, 牛东伟. 蔚县盆地东沟遗址2017年度发掘简报[J]. 人类学学报, 2024, 43(01): 132-142. |
[13] | 王法岗, 杨石霞, 葛俊逸, 岳健平, 赵克良, Andreu Ollé, 李文艳, 杨海勇, 刘连强, 关莹, 谢飞, Francesco d’Errico, Michael Petraglia, 邓成龙. 泥河湾盆地下马碑遗址2013年发掘简报[J]. 人类学学报, 2024, 43(01): 143-156. |
[14] | 张振, 王莹, 李月丛. 泥河湾盆地旧石器时代人类活动与环境关系的研究进展[J]. 人类学学报, 2024, 43(01): 184-198. |
[15] | 周振宇, 王法岗, 关莹. 河北泥河湾盆地西白马营遗址1985-1986年出土的石制品[J]. 人类学学报, 2024, 43(01): 55-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||