人类学学报 ›› 2024, Vol. 43 ›› Issue (06): 993-1005.doi: 10.16359/j.1000-3193/AAS.2024.0083
收稿日期:
2024-03-03
修回日期:
2024-05-10
出版日期:
2024-12-15
发布日期:
2024-11-28
作者简介:
魏偏偏,副研究员,主要从事古人类学、体制人类和和数字考古研究。E-mail: weipianpian@fudan.edu.cn
基金资助:
WEI Pianpian1,2,3(), ZHAO Yuhao4,5
Received:
2024-03-03
Revised:
2024-05-10
Online:
2024-12-15
Published:
2024-11-28
摘要:
更新世古人类股骨干的形态特征对于理解人类的运动行为和体型进化具有重要意义。东亚地区此类化石稀缺且分布分散,增加了研究难度。本文系统对比了东亚更新世古人类股骨的形态差异,发现从早期到晚期,股骨干中部形态特征的变化与其他地区一致,表现为力学形状指数增大和横断面轮廓的变化,这可能与骨盆和股骨结构的演化有关。早中期的股骨粗壮度与其他地区相似,表明东亚古人类具有典型的狩猎采集者体型。然而,在更新世晚期,尽管东亚古人类股骨显示出与晚更新世现代人相似的特征,如股骨嵴和臀肌凸起,但其粗壮度低于欧洲/西亚地区,可能与行为活动或体型差异有关。这些发现为完善东亚地区人类演化史提供了重要补充。
中图分类号:
魏偏偏, 赵昱浩. 东亚地区更新世古人类股骨的演化[J]. 人类学学报, 2024, 43(06): 993-1005.
WEI Pianpian, ZHAO Yuhao. Evolution of Pleistocene human femora in East Asia[J]. Acta Anthropologica Sinica, 2024, 43(06): 993-1005.
图1 东亚地区更新世股骨化石材料出土遗址分布 底图来自自然资源部标准地图服务系统
Fig.1 Geographic locations of Pleistocene hominin fossil sites in East Asia The base map is from the Standard Map Service System of the Ministry of Natural Resources: http://211.159.153.75/index.html
标本Specimens | 出土地点 Location | 属种Species | 年代Dating(BP) | 体质量Body mass(kg) | 股骨最大长 Lmax(Femoral) | 参考文献 References |
---|---|---|---|---|---|---|
Kresna 11 | 印度尼西亚 | 直立人 | ~900 ka | 67.2 | 459 | Puymerail et al., 2012 [ |
La Chaise-BD 5 | 法国 | 尼安德特人 | 127-116 ka | 60.5 | 338 | Couchoud, 2016 [ |
CDV-Tour 1 | 法国 | 尼安德特人 | (OIS 3) | -- | 444 | Vieillevigne, et al., 2008 [ |
Chancelade 1 | 法国 | 晚更新世现代人 | 13 ka | 64.9 | 411 | Barshay-Szmidt, et al. 2016 [ |
柳江(PA91,PA92) | 中国广西 | 晚更新世现代人 | 晚更新世 | 50.9 | 413 | Wei et al., 2023 [ |
田园洞1号 (PA1301, PA1302) | 中国北京 | 晚更新世现代人 | 40 ka | 73.4 | 463 | Wei et al., 2017 [ Shang and Trinkaus., 2012[ |
猫猫洞GM 7506 | 中国贵州 | 晚更新世现代人 | ~14.5 ka | 63.6 | 381 | Wei et al., 2021 [ |
马鹿洞MLDG1678 | 中国云南 | 晚更新世现代人 | ~14.3 ka | 58.0 | 383.0 | Wei et al., 2022 [ |
表1 用于股骨整个骨干形态结构对比的研究材料
Tab.1 Comparative Pleistocene specimens for analysis of cortical thickness and cross-sectional biomechanical properties over the entire femoral diaphysis
标本Specimens | 出土地点 Location | 属种Species | 年代Dating(BP) | 体质量Body mass(kg) | 股骨最大长 Lmax(Femoral) | 参考文献 References |
---|---|---|---|---|---|---|
Kresna 11 | 印度尼西亚 | 直立人 | ~900 ka | 67.2 | 459 | Puymerail et al., 2012 [ |
La Chaise-BD 5 | 法国 | 尼安德特人 | 127-116 ka | 60.5 | 338 | Couchoud, 2016 [ |
CDV-Tour 1 | 法国 | 尼安德特人 | (OIS 3) | -- | 444 | Vieillevigne, et al., 2008 [ |
Chancelade 1 | 法国 | 晚更新世现代人 | 13 ka | 64.9 | 411 | Barshay-Szmidt, et al. 2016 [ |
柳江(PA91,PA92) | 中国广西 | 晚更新世现代人 | 晚更新世 | 50.9 | 413 | Wei et al., 2023 [ |
田园洞1号 (PA1301, PA1302) | 中国北京 | 晚更新世现代人 | 40 ka | 73.4 | 463 | Wei et al., 2017 [ Shang and Trinkaus., 2012[ |
猫猫洞GM 7506 | 中国贵州 | 晚更新世现代人 | ~14.5 ka | 63.6 | 381 | Wei et al., 2021 [ |
马鹿洞MLDG1678 | 中国云南 | 晚更新世现代人 | ~14.3 ka | 58.0 | 383.0 | Wei et al., 2022 [ |
标本Specimen | 年代Age (ka) | 体质量Mass (kg) | 股骨长L(mm) | Ix/Iy | Sj | 参考文献 |
---|---|---|---|---|---|---|
周口店 Zhoukoudian I | 770 | 62.9 | 404 | 0.767 | 5.057332 | [ |
周口店Zhoukoudian II | 770 | 60.7 | 0.697 | [ | ||
周口店Zhoukoudian IV | 770 | 60.6 | 411 | 0.741 | 4.089035 | [ |
周口店Zhoukoudian V | 770 | 61.3 | 0.703 | [ | ||
周口店Zhoukoudian VI | 770 | 62.9 | 0.902 | [ | ||
华龙洞 Hualongdong HLD 11 | ~300 | 60.8 | 0.870 | [ | ||
柳江Liujiang PA91 | 139~67 | 50.9 | 413 | 1.304 | 3.254333 | [ |
田园洞1号PA1302 | 40 | 73.4 | 463 | 2.188 | 4.318599 | [ |
山顶洞 UC 67 | 38.3~33.5 | 67.5 | 1.919 | [ | ||
山顶洞 UC 68 | 38.3~33.5 | 60.0 | 1.849 | [ | ||
港川人 Minatogawa 1 | 19.9 | 60.0 | 398 | 1.035 | 4.058189 | [ |
港川人 Minatogawa 2 | 19.9 | 45.0 | 360 | 0.863 | 3.131001 | [ |
港川人 Minatogawa 3 | 19.9 | 48.4 | 382 | 0.989 | 3.508562 | [ |
港川人 Minatogawa 4 | 19.9 | 45.0 | 360 | 1.020 | 2.729767 | |
猫猫洞 GM7506 | 14.5 | 63.6 | 381 | 1.898 | 4.995176 | [ |
猫猫洞 GM7507 | 14.5 | 59.8 | 1.964 | [ | ||
猫猫洞 GM7508 | 14.5 | 59.8 | 1.235 | [ |
表2 东亚地区更新世古人类股骨中部横断面几何形态特征
Tab.2 Femoral middle cross-sectional geometric properties of East Asian Pleistocene hominins
标本Specimen | 年代Age (ka) | 体质量Mass (kg) | 股骨长L(mm) | Ix/Iy | Sj | 参考文献 |
---|---|---|---|---|---|---|
周口店 Zhoukoudian I | 770 | 62.9 | 404 | 0.767 | 5.057332 | [ |
周口店Zhoukoudian II | 770 | 60.7 | 0.697 | [ | ||
周口店Zhoukoudian IV | 770 | 60.6 | 411 | 0.741 | 4.089035 | [ |
周口店Zhoukoudian V | 770 | 61.3 | 0.703 | [ | ||
周口店Zhoukoudian VI | 770 | 62.9 | 0.902 | [ | ||
华龙洞 Hualongdong HLD 11 | ~300 | 60.8 | 0.870 | [ | ||
柳江Liujiang PA91 | 139~67 | 50.9 | 413 | 1.304 | 3.254333 | [ |
田园洞1号PA1302 | 40 | 73.4 | 463 | 2.188 | 4.318599 | [ |
山顶洞 UC 67 | 38.3~33.5 | 67.5 | 1.919 | [ | ||
山顶洞 UC 68 | 38.3~33.5 | 60.0 | 1.849 | [ | ||
港川人 Minatogawa 1 | 19.9 | 60.0 | 398 | 1.035 | 4.058189 | [ |
港川人 Minatogawa 2 | 19.9 | 45.0 | 360 | 0.863 | 3.131001 | [ |
港川人 Minatogawa 3 | 19.9 | 48.4 | 382 | 0.989 | 3.508562 | [ |
港川人 Minatogawa 4 | 19.9 | 45.0 | 360 | 1.020 | 2.729767 | |
猫猫洞 GM7506 | 14.5 | 63.6 | 381 | 1.898 | 4.995176 | [ |
猫猫洞 GM7507 | 14.5 | 59.8 | 1.964 | [ | ||
猫猫洞 GM7508 | 14.5 | 59.8 | 1.235 | [ |
图3 中部形态结构指的是前后侧/内外侧截面惯性矩比值和极截面惯性矩 A, C, D.所有标本All Specimens;B.东亚地区标本East Asian specimens;早更新世Early Pleistocene (EP),中更新世早期Early Middle Pleistocene (EMP),中更新世晚期Late Middle Pleistocene (LMP),尼安德特人Neanderthals (NEA),晚更新世Late Pleistocene (LPMH)
Fig.3 Hominin femoral midshaft (50% section) anteroposterior/mediolateral bending rigidity (Ix/Iy) and standardized polar moment of area (Sj, biomechanical robusticity)
图4 更新世古人类股骨中部横断面几何形态测量 早更新世:Early Pleistocene, EP;中更新世早期:Early Middle Pleistocene, EMP;中更新世晚期:Late Middle Pleistocene, LMP;尼安德特人:Neanderthals, NEA;晚更新世现代人:Late Pleistocene Modern humans, LPMH。黑色轮廓图black contour:PC1和PC2的正值端the positive side of PC1 and PC2;白色轮廓图white contour:PC1和PC2的负值端the negative side of PC1 and PC2
Fig.4 The geometric morphometric analysis of femoral midshaft cross sections in five Pleistocene hominin groups
图5 更新世古人类股骨干标准化骨密质厚度分布的形态示量图对比 Kresna 11. 直立人Homo erectus[23]; BD 5,CDV-Tour 1. 尼安德特人Neanderthals[14]; Chancelade 1. 欧洲晚更新世现代人European Late Pleistocene modern human [34]; MMD_GM7506. 猫猫洞Maomaodong[10]; Liujiang. 柳江[10]; TY1. 田园洞1号Tianyuan 1 [5]; MLD_MLDG1678. 马鹿洞Maludong. ant: anterior,前侧;med:medial,内侧;post:posterior,后侧;lat:lateral,外侧
Fig.5 Two-dimensional colormap of standardized cortical bone thickness (Scbt) of all investigated femoral specimens
图6 更新世古人类股骨干标准化截面惯性矩分布的形态示量图对比 直立人:Kresna 11[10]; 尼安德特人:BD 5,CDV-Tour 1[10];欧洲晚更新世现代人:Chancelade 1[10];MMD:猫猫洞[10];Liujiang:柳江[10];TY1:田园洞1号;MLD:马鹿洞
Fig.6 Two-dimensional colormap of standardized second moment of areas (Ssma) of all investigated femoral specimens
[1] |
Brian GR, William LJ. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism[J]. Science, 2008, 319(5870): 1662-1665
doi: 10.1126/science.1154197 pmid: 18356526 |
[2] | Carlson KJ, Marchi D. Reconstructing Mobility: Enviromental, Behavioral, and Morphological Feterminants[M]. Brtlin: Springer, 2014 |
[3] | Ruff CB, Sylvester AD, Rahmawati NT, et al. Two Late Pleistocene human femora from Trinil, Indonesia: Implications for body size and behavior in Southeast Asia[J]. Journal of Human Evolution, 2022, 172: 103252 |
[4] |
Stock JT. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy[J]. American Journal of Physical Anthropology, 2006, 131(2): 194-204
doi: 10.1002/ajpa.20398 pmid: 16596600 |
[5] | Wei P, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quaternary International, 2017, 434: 48-56 |
[6] | 魏偏偏. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2020, 93(4): 616-631 |
[7] | Wei P, Weng Z, Carlson KJ, et al. Late Pleistocene partial femora from Maomaodong, southwestern China[J]. Journal of Human Evolution, 2021, 155: 102977 |
[8] | Xing S, Wu XJ, Liu W, et al. Middle Pleistocene human femoral diaphyses from Hualongdong, Anhui Province, China[J]. American Journal of Physical Anthropology, 2021, 174(2): 285-298 |
[9] | Wei P, Ma S, Carlson KJ, et al. A structural reassessment of the Late Pleistocene femur from Maludong, southwestern China[J]. American Journal of Biological Anthropology, 2022, 1-12 |
[10] | Wei P, Cazenave M, Zhao Y, et al. Structural properties of the Late Pleistocene Liujiang femoral diaphyses from southern China[J]. Journal of Human Evolution, 2023, 183, 103424 |
[11] |
Harmon EH. The shape of the early hominin proximal femur[J]. American Journal of Physical Anthropology, 2009, 139(2), 154-171
doi: 10.1002/ajpa.20966 pmid: 19012328 |
[12] | Trinkaus E, Ruff CB. Diaphyseal cross-sectional morphology and biomechanics of the Fond-de-Forêt 1 femur and the Spy 2 femur and tibia[J]. Bulletin de La Société Royale Belge d’Anthropologie et de Préhistoire, 1989, 100: 33-42 |
[13] | Trinkaus E, Ruff CB. Femoral and tibial diaphyseal cross-Sectional geometry in Pleistocene Homo[J]. PaleoAnthropology, 2012, 13-62 |
[14] | Puymerail L, Volpato V, Debénath A, et al. A Neanderthal partial femora diaphysis from the “Grotte de la Tour”, La Chaise-de-Vouthon (Charente, France): Outer morphology and endostructural organization[J]. Comptes Rendus Palevol, 2012, 11(8): 581-593 |
[15] |
Ruff CB. Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects[J]. American Journal of Physical Anthropology, 2002, 119(4): 305-342
doi: 10.1002/ajpa.10117 pmid: 12448016 |
[16] | McCown TD, Keith A. The Stone Age of Mount Carmel II: The Fossil Human Remains from the Levalloiso Mousterian[M]. Oxford: Clarendon Press, 1939 |
[17] | Trinkaus E. Early modern humans[J]. Annual Review of Anthropology, 2005, 34: 207-230 |
[18] |
Liu W, Martinón-Torres M, Kaifu Y, et al. A mandible from the Middle Pleistocene Hexian site and its significance in relation to the variability of Asian Homo erectus[J]. American Journal of Physical Anthropology, 2017, 162: 715-731
doi: 10.1002/ajpa.23162 pmid: 28109118 |
[19] | Wu X, Trinkaus E. The Xujiayao 14 mandibular ramus and Pleistocene Homo mandibular variation[J]. Comptes Rendus Palevol, 2014, 13(4): 333-341 |
[20] | Xing S, O’Hara M, Guatelli-Steinberg D, et al. Dental scratches and handedness in East Asian early Pleistocene Hominins[J]. International Journal of Osteoarchaeology, 2017, 27(6): 937-946 |
[21] | 刘武, 吴秀杰, 邢松, 等. 中国古人类化石(第一版)[M]. 北京: 科学出版社, 2014, 347-350 |
[22] |
Chevalier T, Özçelik K, De Lumley MA, et al. The endostructural pattern of a middle Pleistocene human femoral diaphysis from the Karain E site (Southern Anatolia, Turkey)[J]. American Journal of Physical Anthropology, 2015, 157(4): 648-658
doi: 10.1002/ajpa.22762 pmid: 26059778 |
[23] |
Puymerail L, Ruff CB, Bondioli L, et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java)[J]. Journal of Human Evolution, 2012, 63(5): 741-749
doi: 10.1016/j.jhevol.2012.08.003 pmid: 23036460 |
[24] | Barshay-Szmidt C, Costamagno S, Henry-Gambier D, et al. New extensive focused AMS 14C dating of the Middle and Upper Magdalenian of the western Aquitaine/Pyrenean region of France (ca. 19-14 ka cal BP): Proposing a new model for its chronological phases and for the timing of occupation[J]. Quaternary International, 2016, 414: 62-91 |
[25] | Couchoud I. Étude Pétrographique et Isotopique de Spéléothèmes du Sud-Ouest de la France Formés en Contexte Archéologique: Contribution à la Connaissance des Paléoclimats Régionaux du Stade Isotopique 5[D]. Ph.D. Dissertation, University of Bordeaux, 2006 |
[26] | Matsu’ura S, Kondo M, Danhara T, et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area[J]. Science, 367(6474), 2020: 210-214. |
[27] | Shang H, Trinkaus E. The Early Modern Human from Tianyuan Cave, China[M]. Texas A&M University Press, College Station, 2010 |
[28] | Vieillevigne E, Bourguignon L, Ortega I, et al. Analyse croisée des données chronologiques et des industries lithiques dans le grand sud-ouest de la France (OIS 10 à 3)[J]. PALEO, 2008, 20: 145-166 |
[29] |
Ruff CB, Hayes W. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation[J]. American Journal of Physical Anthropology, 1983, 60: 359-381
pmid: 6846510 |
[30] | Wei P, Lu H, Carlson KJ, et al. The upper limb skeleton and behavioral lateralization of modern humans from Zhaoguo Cave, southwestern China[J]. American Journal of Physical Anthropology, 2020, 173(4): 671-696. |
[31] | Slice DE. Geometric morphometrics[J]. Annual Review of Anthropology, 2007, 36: 261-281 |
[32] | 魏偏偏, 邢松. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2013, 32(3): 354-364 |
[33] | Morimoto N, Ponce de Leon MS, Zollikofer CP. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff’s law[J]. Anat Rec (Hoboken), 2011, 294(4), 589-609. |
[34] |
Bondioli L, Bayle P, Dean C, et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[J]. American Journal of Physical Anthropology, 2010, 142(2): 328-34
doi: 10.1002/ajpa.21271 pmid: 20229503 |
[35] | Trinkaus E. Modern human versus Neandertal evolutionary distinctiveness[J]. Current Anthropology, 2006, 47(4): 597-620 |
[36] |
Macintosh AA, Stock JT. Intensive terrestrial or marine locomotor strategies are associated with inter- and intra-limb bone functional adaptation in living female athletes[J]. American Journal of Physical Anthropology, 2019, 168(3): 566-581
doi: 10.1002/ajpa.23773 pmid: 30613942 |
[37] |
Shaw CN, Stock JT. Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes[J]. American Journal of Physical Anthropology, 2009, 140(1): 160-172
doi: 10.1002/ajpa.21063 pmid: 19358297 |
[38] |
Weatherholt AM, Warden SJ. Tibial bone strength is enhanced in the jump leg of collegiate-level jumping athletes: A within-subject controlled cross-sectional study[J]. Calcified Tissue International, 2016, 98(2): 129-139
doi: 10.1007/s00223-015-0078-2 pmid: 26543032 |
[1] | 张亚盟, 吴秀杰. 中国晚更新世早期现代人内耳迷路的形态变异[J]. 人类学学报, 2024, 43(06): 1038-1047. |
[2] | 徐静玥, 何湘栋, 牛东伟, 李潇丽. 泥河湾盆地蔚县东沟旧石器遗址的埋藏过程[J]. 人类学学报, 2024, 43(06): 1075-1090. |
[3] | 刘武. 二十一世纪中国人类演化研究的发现、认识与理论探索[J]. 人类学学报, 2024, 43(06): 881-899. |
[4] | 裴树文, 王法岗, 牛东伟. 二十一世纪以来泥河湾盆地古人类活动的发现与研究进展[J]. 人类学学报, 2024, 43(06): 913-933. |
[5] | 王伟. 华南地区现代人化石及其时代[J]. 人类学学报, 2024, 43(06): 934-950. |
[6] | 胡海虔, 黄万波, 魏光飚, 代辉, 熊璨, 何树兴, 姜涛. 重庆武隆早更新世地层中发现巨猿化石[J]. 人类学学报, 2024, 43(05): 701-711. |
[7] | 任进成, 李锋, 陈福友, 高星. 泥河湾盆地板井子遗址2015年出土石制品的剥片技术[J]. 人类学学报, 2024, 43(05): 712-726. |
[8] | 崔祚文, 王春雪, 陈全家, 曾庆硕, 张楠. 2021年河南南召新发现的旧石器[J]. 人类学学报, 2024, 43(05): 853-864. |
[9] | 王家琪, 张雪微, 王春雪, 盛立双. 天津蓟州区太子陵旧石器地点2021年发掘简报[J]. 人类学学报, 2024, 43(03): 440-447. |
[10] | 廖卫. 中国南方猩猩化石的研究进展[J]. 人类学学报, 2024, 43(02): 199-213. |
[11] | 陈育芝, 武仙竹. 长江三峡及周边地区早期人类的生存环境与生存行为[J]. 人类学学报, 2024, 43(02): 287-297. |
[12] | 艾兰, 田淳, 李大伟, 李金燕, 王伟. 广西田东定模遗址发掘简报[J]. 人类学学报, 2024, 43(02): 298-313. |
[13] | 魏天旭, 王春雪, 张雪微, 王家琪, 盛立双. 天津蓟州区朝阳洞遗址2号地点发掘简报[J]. 人类学学报, 2024, 43(02): 314-320. |
[14] | 赵云啸, 仝广, 涂华, 赵海龙. 河北省泥河湾盆地石沟遗址C区发掘简报[J]. 人类学学报, 2024, 43(01): 122-131. |
[15] | 裴树文, 徐哲, 叶芷, 马东东, 贾真秀. 泥河湾盆地中更新世气候转型期人类的适应行为[J]. 人类学学报, 2024, 43(01): 19-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||