人类学学报 ›› 2020, Vol. 39 ›› Issue (04): 555-563.doi: 10.16359/j.cnki.cn11-1963/q.2020.0023cstr: 32091.14.j.cnki.cn11-1963/q.2020.0023
潘雷1,2,3, 廖卫4,5, 王伟6, 刘建辉7, 吉学平7,8(), 杨晓梅9, 郝以鑫10
收稿日期:
2020-02-07
修回日期:
2020-04-29
出版日期:
2020-11-15
发布日期:
2020-11-23
通讯作者:
吉学平
作者简介:
潘雷,博士,副研究员,主要从事古猿、古人类牙齿及演化研究。
基金资助:
PAN Lei1,2,3, LIAO Wei4,5, WANG Wei6, LIU Jianhui7, JI Xueping7,8(), YANG Xiaomei9, HAO Yixin10
Received:
2020-02-07
Revised:
2020-04-29
Online:
2020-11-15
Published:
2020-11-23
Contact:
JI Xueping
摘要:
禄丰古猿蝴蝶种 (Lufengpithecus hudienensis) 也称蝴蝶古猿,是重要的早期人科成员,化石产自云南元谋盆地竹棚-小河及雷老两个地点群,其年代为中新世晚期。上世纪八、九十年代的发掘工作共获得幼年个体颅骨1具、残上颌骨10件、残下颌骨17件及1500多枚单个牙齿。受限于当时的技术条件,蝴蝶古猿牙齿内部结构及三维形态一直未有报道和对比研究。本文首次使用高精度CT配合三维几何形态测量方法,对6枚产自小河地点的蝴蝶古猿下颌第四前臼齿的釉质-齿质交界面形态进行了观察和对比,对比材料包括步氏巨猿、猩猩(化石)、大猩猩、黑猩猩及现代人。多变量分析显示,蝴蝶古猿釉质-齿质交界面几何形态接近于本文所涉及的大型猿类对比标本,但并没有表现出与某一特定类群的相似性;咬合面轮廓狭长,前凹尺寸明显小于后凹;整体形态介于齿质尖较高的大猩猩和齿质尖较低、釉质-齿质交界面形态扁平的巨猿、猩猩和黑猩猩之间。本文所观察到的类群之间的异同可能与趋同演化有关,也需要更多数据的进一步验证。将釉质-齿质交界面的三维几何形态和其他牙齿内部结构的信息(如釉质厚度及其三维分布规律等)综合,有助于进一步讨论蝴蝶古猿的分类学、系统发育和食性。
中图分类号:
潘雷, 廖卫, 王伟, 刘建辉, 吉学平, 杨晓梅, 郝以鑫. 禄丰古猿蝴蝶种下第四前臼齿釉质-齿质交界面的三维几何形态[J]. 人类学学报, 2020, 39(04): 555-563.
PAN Lei, LIAO Wei, WANG Wei, LIU Jianhui, JI Xueping, YANG Xiaomei, HAO Yixin. Geometric morphometry of the enamel-dentine junction interface of Lufengpithecus hudienensis lower fourth premolars[J]. Acta Anthropologica Sinica, 2020, 39(04): 555-563.
Taxon | n | Provenance | Chronological range | Citation (description of the outer enamel) |
---|---|---|---|---|
Lufengpithecus hudienensis | 6 | Zhupeng-Xiaohe Site, Yuanmou | Biochronology: 9-7 or 8.5-6 Ma[ | Qi and Dong[1], He and Jia[ |
Gigantopithecus blacki | 8 | Gigantopithecus cave, Liucheng | Early Pleistocene[ Cladistic computation: 1.5-1.2 Ma[ | Woo[35], Pei[ |
Fossil Pongo sp. | 10 | Naxian cave, Chongzuo | Middle to Late Pleistocene | unpublished |
Pan troglodytes | 4 | Africa | Extant | - |
Gorilla gorilla | 4 | Africa | Extant | - |
Recent modern human | 10 | Asia/ South Africa | Extant | Pan et al[ |
Tab.1 Composition of the study sample
Taxon | n | Provenance | Chronological range | Citation (description of the outer enamel) |
---|---|---|---|---|
Lufengpithecus hudienensis | 6 | Zhupeng-Xiaohe Site, Yuanmou | Biochronology: 9-7 or 8.5-6 Ma[ | Qi and Dong[1], He and Jia[ |
Gigantopithecus blacki | 8 | Gigantopithecus cave, Liucheng | Early Pleistocene[ Cladistic computation: 1.5-1.2 Ma[ | Woo[35], Pei[ |
Fossil Pongo sp. | 10 | Naxian cave, Chongzuo | Middle to Late Pleistocene | unpublished |
Pan troglodytes | 4 | Africa | Extant | - |
Gorilla gorilla | 4 | Africa | Extant | - |
Recent modern human | 10 | Asia/ South Africa | Extant | Pan et al[ |
Fig.1 Occlusal views of the EDJ of L. hudienensis P4 Left teeth were mirrored to the right side and were marked with an asterisk (*). Abbreviations: B=buccal; D=distal; L=lingual; M=mesial. Scale bar=5 mm
Fig.2 EDJ surface model of a fossil Pongo P4, showing occlusal (A), buccal (B) and lingual (C) views The buccal and lingual views are slightly oblique to show the distribution of landmarks. Yellow spheres are semi-landmarks running between homologous landmarks (numbered, red spheres). Abbreviations: B=buccal; L=lingual; D=distal; M=mesial
Fig.3 A) Result of bgPCA of the semi-landmark configuration of P4. a-f) Lineplots of EDJ ridge curves after Procurstes superimposition and bgPCA A) bgPC1 and bgPC2 represent components of the shape variation. Coloring of a-f: green-bgPC1 Max; red-bgPC1 Min; blue-bgPC2 Max; yellow-bgPC2 Min. The buccal and lingual views (b-f) are slightly oblique to better present the 3D image
[1] | Qi GQ, Dong W. Lufengpithecus hudienensis site[A]. State Key Project of the 9th five year plan—Origin of Early Humans and Environmental Background[C]. Beijing: Science Press, 2006: 1-352 |
[2] | Yue LP, Zhang YX. Paleomagnatic dating of Lufengpithecus hudienensis localities[A]. In: Qi GQ, Dong W(Eds.), Lufengpithecus hudienensis Site[C]. Beijing: Science Press, 2005, 245-251 |
[3] |
Ni XJ, Qiu ZD. The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology[J]. Journal of Human Evolution, 2002,42:535-546
doi: 10.1006/jhev.2001.0540 URL pmid: 11969296 |
[4] | Qi GQ, Dong W, Zheng L, et al. Taxonomy, age and environment status of the Yuanmou hominoids[J]. Chinese Science Bulletin, 2006,51:704-712 |
[5] | Pan YR, Liu JH, Dong W. Artiodactyla[A]. In: Qi, GQ, Dong, W (Eds.), Lufengpithecus hudienensis Site[C]. Beijing: Science Press, 2006, 195-228 |
[6] | Zhang XY, Lin YP, Jiang C. A new species of Homo from Yuanmou, Yunnan (In Chinese)[J]. Sixiangzhanxian, 1987,3:54-56 |
[7] | Zhang XY, Lin YP, Jiang C. A new species of Ramapithecus from Yuanmou, Yunnan Province (In Chinese)[J]. Sixiangzhanxian, 1987, 53-56 |
[8] | Zhang XY, Zheng L, Gao F. New genus Sinopithecus and its anthropological significance (In Chinese)[J]. Sixiangzhanxian, 1990,90:53-58 |
[9] | Zheng L, Zhang XY. Hominoid fossils[A]. in: He, Z-Q (Ed.), Yuanmou Homonoid Fauna[C]. Yunnan Science Press, Kunming, 1997: 21-55 |
[10] | Zheng L. Classification and systematic status of Lufengpithecus hudienensis[A]. In: Qi, G-Q, Dong, W (Eds.), Lufengpithecus hudienensis Site[C]. Science Press, Beijing, 2005: 101-108 |
[11] | Liu W, Zheng L, Jiang C. Statistical analyses of metric data of hominoid teeth found in Yuanmou of China[J]. Chinese Science Bulletin, 2000,45:936-942 |
[12] |
Schwartz GT, Liu W, Zheng L. Preliminary investigation of dental microstructure in the Yuanmou hominoid (Lufengpithecus hudienensis), Yunnan Province, China[J]. Journal of Human Evolution, 2003,44:189-202
doi: 10.1016/s0047-2484(02)00197-5 URL pmid: 12662942 |
[13] | Wu RK. A revision of the classification of the Lufeng great apes[J]. Acta Anthropologica Sinica, 1987,6:265-271 |
[14] |
Kelley J, Etler D. Hominoid dental variability and species number at the late Miocene site of Lufeng, China[J]. American Journal of Primatology, 1989,18:15-34
URL pmid: 31964049 |
[15] | Kelley J, Gao F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia[J]. Proceedings of the National Academy of Sciences, 2012,109:6882-6885 |
[16] |
Harrison T, Xueping J, Su D. On the systematic status of the late Neogene hominoids from Yunnan Province, China[J]. Journal of Human Evolution, 2002,43:207-227
doi: 10.1006/jhev.2002.0570 URL pmid: 12160716 |
[17] | Schwartz JH. Lufengpithecus and hominoid phylogeny: problems in delineating and evaluating phylogenetically relevant characters[A]. In: Begun, D, Ward, C, Rose, M (Eds.), Function, Phylogeny, and Fossils[C]. Springer, Boston, 1997, 363-388 |
[18] | Liu W, Hlusko L, Zheng L. Morphometric analysis of hominoid lower molars from Yuanmou of Yunnan Province, China[J]. Primates, 2001,42:123-134 |
[19] | Liu W. Tooth morphology and diet structure of Lufengpithecus hudienensis[A]. in: Qi, G-Q, Dong, W (Eds.), Lufengpithecus hudienensis Site[C]. Science Press, Beijing, 2005: 92-98 |
[20] | Martin LB, Olejniczak AJ, Maas MC. Enamel thickness and microstructure in pitheciin primates, with comments on dietary adaptations of the middle Miocene hominoid Kenyapithecus[J]. Journal of Human Evolution, 2003,45:351-367 |
[21] |
Constantino PJ, Lee JJ-W, Morris D, et al. Adaptation to hard-object feeding in sea otters and hominins[J]. Journal of Human Evolution, 2011,61:89-96
doi: 10.1016/j.jhevol.2011.02.009 URL pmid: 21474163 |
[22] | Schwartz GT, McGrosky A, Strait DS. Fracture mechanics, enamel thickness and the evolution of molar form in hominins[J]. Biology Letters, 2020,16:20190671 |
[23] | Butler P. The ontogeny of molar pattern[J]. Biological Reviews, 1956,31:30-69 |
[24] |
Olejniczak A, Gilbert C, Martin L, et al. Morphology of the enamel-dentine junction in sections of anthropoid primate maxillary molars[J]. Journal of Human Evolution, 2007,53:292-301
doi: 10.1016/j.jhevol.2007.04.006 URL pmid: 17582465 |
[25] | Skinner MM, Wood BA, Boesch C, et al. Dental trait expression at the enamel-dentine junction of lower molars in extant and fossil hominoids[J]. Journal of Human Evolution, 2008,54:173-186 |
[26] |
Beaudet A, Dumoncel J, Thackeray F, et al. Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids[J]. Journal of Human Evolution, 2016,95:104-120
doi: 10.1016/j.jhevol.2016.04.004 URL pmid: 27260177 |
[27] |
Benazzi S, Kullmer O, Grosse IR, et al. Using occlusal wear information and finite element analysis to investigate stress distributions in human molars[J]. Journal of Anatomy, 2011,219:259-272
doi: 10.1111/j.1469-7580.2011.01396.x URL pmid: 21615398 |
[28] |
Pan L, Dumoncel J, de Beer F, et al. Further morphological evidence on South African earliest Homo lower postcanine dentition: enamel thickness and enamel dentine junction[J]. Journal of Human Evolution, 2016,96:82-96
doi: 10.1016/j.jhevol.2016.05.003 URL pmid: 27343773 |
[29] |
Moore NC, Hublin JJ, Skinner MM. Premolar root and canal variation in extant non-human hominoidea[J]. American Journal of Physical Anthropology, 2015,158:209-226
doi: 10.1002/ajpa.22776 URL |
[30] |
Moore NC, Thackeray JF, Hublin JJ, et al. Premolar root and canal variation in South African Plio-Pleistocene specimens attributed to Australopithecus africanus and Paranthropus robustus[J]. Journal of Human Evolution, 2016,93:46-62
URL pmid: 27086055 |
[31] |
Pan L, Dumoncel J, Mazurierd A, et al. Structural analysis of premolar roots in Middle Pleistocene hominins from China[J]. Journal of Human Evolution, 2019,136:102669
doi: 10.1016/j.jhevol.2019.102669 URL |
[32] | Lucas P, Corlett R, Luke D. Postcanine tooth size and diet in anthropoid primates[J]. Zeitschrift für Morphologie und Anthropologie, 1986, 253-276 |
[33] | Kupczik K, Spoor F, Pommert A, et al. Premolar root number variation in hominoids: genetic polymorphism vs. functional significance[A]. in: Żądzińska E (Ed.), Current Trends in Dental Morphology Research[C]. University of Lodz Press, Lodz, 2005: 257-268 |
[34] |
Scott JE, Campbell RM, Baj LM, et al. Dietary signals in the premolar dentition of primates[J]. Journal of Human Evolution, 2018, 221-234
doi: 10.1006/jhev.1998.0254 URL pmid: 9749407 |
[35] | Woo J. The mandibles and dentition of Gigantopithecus[J]. Palaeontol. Sinica ser. D, 1962, 1-96 |
[36] | Pei W. Excavation of Liucheng Gigantopithecus cave and exploration of other caves in Kwangsi (In Chinese with English abstract)[J]. Memoirs of Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, 1965,7:1-54 |
[37] | Dong W, Liu WH, Bai WP. Cladistic approach on chronological relationship of the Pleistocene mammalian faunas from China[J]. Vertabrata Palasiatica, 2020,58:67-81 |
[38] |
Molnar S. Human tooth wear, tooth function and cultural variability[J]. American Journal of Physical Anthropology, 1971,34:175-189
doi: 10.1002/ajpa.1330340204 URL pmid: 5572602 |
[39] | Qi GQ, Ni XJ. The age and environments of Lufengpithecus hudienensis[A]. in: Qi, G-Q, Dong, W (Eds.), Lufengpithecus hudienensis Site[C]. Science Press, Beijing, 2005: 229-238 |
[40] | He ZQ, Jia LP. Yuanmou hominoid fauna[A]. Kunming: Yunnan Science Press, 1997, 1-270 |
[41] |
Pan L, Thackeray JF, Dumoncel J, et al. Intra-individual metameric variation expressed at the enamel-dentine junction of lower post-canine dentition of South African fossil hominins and modern humans[J]. American Journal of Physical Anthropology, 2017,163:806-815
doi: 10.1002/ajpa.23240 URL pmid: 28573649 |
[42] | Hoffman JW, De Beer FC. Characteristics of the micro-focus X-ray tomography facility (MIXRAD) at Necsa in South Africa[A]// 18th World Conference on Nondestructive Testing[C]. 2012: 16-20 |
[43] | R Development Core Team. R: A language and environment for statistical computing[EB/OL]. R Foundation for Statistical Computing, Vienna, 2012 |
[44] | Dryden IL, shapes package. . R Foundation for Statistical Computing, Vienna, Austria. Contributed package, Version 1.2.4[CP/OL]. URL http://www.R-project.org, 2018 |
[45] | Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists[J]. Journal of statistical software, 2007,22:1-20 |
[46] |
Schlager S, Profico A, Di Vincenzo F, et al. Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package “Morpho”[J]. Plos One, 2018,13:e0194073
doi: 10.1371/journal.pone.0194073 URL pmid: 29554122 |
[47] | Mitteroecker P, Bookstein F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics[J]. Evolutionary Biology, 2011,38:100-114 |
[48] |
Braga J, Thackeray JF, Subsol G, et al. The enamel-dentine junction in the postcanine dentition of Australopithecus africanus: intra-individual metameric and antimeric variation[J]. Journal of Anatomy, 2010,216:62-79
doi: 10.1111/j.1469-7580.2009.01154.x URL pmid: 19900182 |
[49] |
Zanolli C, Pan L, Dumoncel J, et al. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden[J]. Journal of Human Evolution, 2018,116:1-13
URL pmid: 29477178 |
[50] |
Olejniczak A, Smith TM, Wang W, et al. Molar enamel thickness and dentine horn height in Gigantopithecus blacki[J]. American Journal of Physical Anthropology, 2008,135:85-91
doi: 10.1002/ajpa.20711 URL pmid: 17941103 |
[51] |
Watts DP. Composition and variability of mountain gorilla diets in the central Virungas[J]. American Journal of Primatology, 1984,7:323-356
URL pmid: 32106635 |
[52] |
Tutin CE, Fernandez M, Rogers ME, et al. Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve, Gabon[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1991,334:179-186
doi: 10.1098/rstb.1991.0107 URL pmid: 1685576 |
[53] | Jordi MN, Püschel TA, Alexander D, et al. Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage[J]. Scientific Reports, 2020,10(6793) |
[54] | Kay RF, Ungar PS. Dental evidence for diet in some Miocene catarrhines with comments on the effects of phylogeny on the interpretation of adaptation[A]. Function, phylogeny, and fossils[C]. Springer, 1997: 131-151 |
[55] | Daegling DJ, Grine FE. Bamboo feeding, dental microwear, and diet of the Pleistocene ape Gigantopithecus blacki[J]. South African Journal of Science, 1994,90:527-532 |
[56] | Ciochon RL, Piperno DR. Thompson RG, Opal phytoliths found on the teeth of the extinct ape Gigantopithecus blacki: implications for paleodietary studies[J]. Proceedings of the National Academy of Sciences, 1990,87:8120-8124 |
[57] | Qu Y, Jin C, Zhang Y, et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene[J]. Quaternary International, 2014,354:52-58 |
[58] |
Smith TM, Olejniczak AJ, Martin L, et al. Variation in hominoid molar enamel thickness[J]. Journal of Human Evolution, 2005,48:575-592
doi: 10.1016/j.jhevol.2005.02.004 URL pmid: 15927661 |
[59] |
Lucas P, Constantino P, Wood B, et al. Dental enamel as a dietary indicator in mammals[J]. BioEssays, 2008,30:374-385
doi: 10.1002/bies.20729 URL pmid: 18348196 |
[1] | 叶梓琪, 何安益, 梁优, 李法军. 广西灰窑田史前遗址人类髌骨的形态变异[J]. 人类学学报, 2024, 43(02): 259-272. |
[2] | 雷蕾, 贺乐天, 李大伟, 李浩. 三维几何形态测量方法在石制品分析中的应用[J]. 人类学学报, 2021, 40(06): 970-980. |
[3] | 魏偏偏. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2020, 39(04): 616-631. |
[4] | 潘雷. 人类牙齿齿冠和齿根分离两种技术方法对牙釉质厚度测量的影响[J]. 人类学学报, 2019, 38(03): 398-406. |
[5] | 崔娅铭. 现代各主要人群额骨3D几何形态的对比[J]. 人类学学报, 2018, 37(02): 228-240. |
[6] | 张亚盟;魏偏偏;吴秀杰. 现代人头骨断面轮廓的性别鉴定——基于几何形态测量的研究[J]. 人类学学报, 2016, 35(02): 172-180. |
[7] | 崔娅铭. 现代各主要人群中面部3D几何形态的对比[J]. 人类学学报, 2016, 35(01): 89-100. |
[8] | 魏偏偏, 邢松. 人类股骨断面面积与形状的不对称性——基于三维激光扫描的形态测量分析[J]. 人类学学报, 2013, 32(03): 354-364. |
[9] | 邢松; 周蜜; 刘武. 中国人牙齿形态测量分析——近代人群上、下颌前臼齿齿冠轮廓形状及其变异[J]. 人类学学报, 2010, 29(02): 132-149. |
[10] | 尉苗; 王涛; 赵丛苍; 陈靓; 王昌燧. 甘肃西山遗址早期秦人的饮食与口腔健康[J]. 人类学学报, 2009, 28(01): 45-56. |
[11] | 刘武,曾祥龙. 陕西陇县战国时代人类牙齿形态特征[J]. 人类学学报, 1996, 15(04): 302-314. |
[12] | 刘武,曾祥龙. 第三臼齿退化及其在人类演化上的意义[J]. 人类学学报, 1996, 15(03): 185-199. |
[13] | 刘武. 华北新石器时代人类牙齿形态特征及其在现代中国人起源与演化上的意义[J]. 人类学学报, 1995, 14(04): 360-380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||