人类学学报 ›› 2020, Vol. 39 ›› Issue (04): 616-631.doi: 10.16359/j.cnki.cn11-1963/q.2020.0041
收稿日期:
2020-02-08
修回日期:
2020-04-10
出版日期:
2020-11-15
发布日期:
2020-09-19
作者简介:
魏偏偏,复旦大学生命科学学院现代人类学教育部重点实验室博士后,Email:基金资助:
Received:
2020-02-08
Revised:
2020-04-10
Online:
2020-11-15
Published:
2020-09-19
摘要:
1960年,在云南省丽江市发现了三根古人类股骨,通过地层观察,仅PA108可归为更新世晚期。前人对PA108做了初步报导,为了进一步了解丽江人股骨的演化分类地位和东亚早期现代人股骨形态变异,本文对PA108的内外结构进行了详尽的分析。研究发现,PA108具有明显的早期现代人特征,即明显的股骨粗线、骨干中部后侧骨密质最厚和中部横断面轮廓形状偏椭圆。PA108标本也有一定的特殊性,体现在骨干中近端和中部骨密质厚度分布上,这可能与其股骨嵴发育较弱有关,这一特征也导致了PA108与其他东亚早期现代人之间的形态差异,这些形态变异进一步扩大了目前已知的东亚地区早期现代人变异范围。同时,在采用骨密质厚度分布模式进行分类时,建议关注股骨骨干中部骨密质最厚部位。
中图分类号:
魏偏偏. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2020, 39(04): 616-631.
WEI Pianpian. Structural properties of the femoral remains from Lijiang, Yunnan province[J]. Acta Anthropologica Sinica, 2020, 39(04): 616-631.
分组 | 标本号 | |
---|---|---|
35% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-IX, X, Gesher-B.-Y. 1, OH 28, Trinil II, III, IV, V | |
Q23 | Broken Hill E690 | |
Nea. | Amud, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, Spy 2, Tabun 1 | |
Q2 | Qafzeh 9, Skhul 4, 5, 6, 7, Cro-Magnon 1, 4322, 4328, Dolní V?stonice 3, Dolní V?stonice 13, Dolní V?stonice 14, Dolní V?stonice 16, Dolní V?stonice 40, Ein Gev 1, Minatogawa 1, Minatogawa 3, Minatogawa 4, Mlade? 27, Nahal ‘En-Gev 1, Ohalo 2, Paviland 1, Pavlov 1, Sunghir 1, 4, Trinil Ⅰ | |
50% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, BOU_VP_2/15,19/63, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-IX, X, XIII, XIV, XVI, Gesher-B.-Y. 1, OH28, Trinil II, IV, V, Zhoukoudian 1, 2, 4, 5, 6, | |
Q23 | Berg Aukas 1, Broken Hill E690, E793, Castel del Guido 1, Ehringsdorf 5, La Chaise-BD 5, Mammolo 1, Tabun E1, Lazeret 15/17, 25, Karain | |
Nea. | Amud 1, CDV-Tour 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, Palomas 96, Quina 5, Rochers-de-V. 1, Saint-Césaire 1, Shanidar 4, 5, 6, Spy 2, Tabun 1, 3 | |
50% | Q3 | Qafzeh 3, 8, 9, Skhul 3, 4, 5, 6, 7, Arena Candide 1, Barma Grande 2, Cro-Magnon 1, 4322, 4324, Dolní V?stonice 3, 13, 14, 16, 35, Ein Gev 1, Grotte-des-Enfants 4, Minatogawa 1, 2, 3, 4, Mlade? 27, Nahal ‘En-Gev 1, Ohalo 2, Paglicci 25, Paviland 1, Pavlov 1, Rochette 2, Sunghir 1, 4, Veneri 1, 2, Willendorf 1, Zhoukoudian-UC 67, UC 68 |
65% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-X, XI, XIII, XVI, AT-1020, Gesher-B.-Y. 1, OH 28, Trinil II, III, IV | |
Q23 | Broken Hill E690, Tabun E1, Karain | |
Nea. | Amud 1, CDV-Tour 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, Krapina 257.32, 257.33, Palomas 52, 92, 96, Quina 38, Shanidar 6, Spy 2 | |
Q3 | Qafzeh 6, 8, 9, Skhul 4, 5, Cro-Magnon 1, 4322, 4324, Dolní V?stonice 3, 13, 14, 16, 41, Eiv Gev 1, Minatogawa 1, 3, 4, Mlade? 27, 28, Nahal ‘En-Gev 1, Ohalo 2, Paviland, Pavlov 1, Sunghir 1, 4, Tianyuan 1, Willendorf 1 | |
80% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, Kresna 11 |
Q21 | AT-SH F-X, XI, XIII, XIV, XVI, AT-1020, Gesher-B.-Y. 1, OH 28, Trinil II, III, IV | |
Q23 | Broken Hill E689, E690, E709, La Chaise-BD 5, Tabun E1 | |
Nea. | Amud 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Krapina 213, 214, Saint-Césaire 1, Spy 2, Tabun 1 | |
Q3 | Qafzeh 8, 9, Skhul 4, 5, 6, 9, Arene Candide 1, Barma Grande 2, Cro-Magnon 1, 4322, Dolní V?stonice 3, 13, 14, 16, 35, Ein Gev 1, Grotte-des-Enfants 4, Minatogawa 1, 2, 3, 4, Mlade? 27, 28, Nahal ‘En-Gev 1, Ohalo 2, Paglicci 25, Paviland 1, Pavlov 1, Rochette 2, Sunghir 1,Tianyuan 1, Veneri 1, 2 |
表1 生物力学分析中使用的更新世古人类对比标本
Tab.1 Comparative Pleistocene Hominin samples for cross-sectional geometry
分组 | 标本号 | |
---|---|---|
35% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-IX, X, Gesher-B.-Y. 1, OH 28, Trinil II, III, IV, V | |
Q23 | Broken Hill E690 | |
Nea. | Amud, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, Spy 2, Tabun 1 | |
Q2 | Qafzeh 9, Skhul 4, 5, 6, 7, Cro-Magnon 1, 4322, 4328, Dolní V?stonice 3, Dolní V?stonice 13, Dolní V?stonice 14, Dolní V?stonice 16, Dolní V?stonice 40, Ein Gev 1, Minatogawa 1, Minatogawa 3, Minatogawa 4, Mlade? 27, Nahal ‘En-Gev 1, Ohalo 2, Paviland 1, Pavlov 1, Sunghir 1, 4, Trinil Ⅰ | |
50% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, BOU_VP_2/15,19/63, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-IX, X, XIII, XIV, XVI, Gesher-B.-Y. 1, OH28, Trinil II, IV, V, Zhoukoudian 1, 2, 4, 5, 6, | |
Q23 | Berg Aukas 1, Broken Hill E690, E793, Castel del Guido 1, Ehringsdorf 5, La Chaise-BD 5, Mammolo 1, Tabun E1, Lazeret 15/17, 25, Karain | |
Nea. | Amud 1, CDV-Tour 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, Palomas 96, Quina 5, Rochers-de-V. 1, Saint-Césaire 1, Shanidar 4, 5, 6, Spy 2, Tabun 1, 3 | |
50% | Q3 | Qafzeh 3, 8, 9, Skhul 3, 4, 5, 6, 7, Arena Candide 1, Barma Grande 2, Cro-Magnon 1, 4322, 4324, Dolní V?stonice 3, 13, 14, 16, 35, Ein Gev 1, Grotte-des-Enfants 4, Minatogawa 1, 2, 3, 4, Mlade? 27, Nahal ‘En-Gev 1, Ohalo 2, Paglicci 25, Paviland 1, Pavlov 1, Rochette 2, Sunghir 1, 4, Veneri 1, 2, Willendorf 1, Zhoukoudian-UC 67, UC 68 |
65% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-X, XI, XIII, XVI, AT-1020, Gesher-B.-Y. 1, OH 28, Trinil II, III, IV | |
Q23 | Broken Hill E690, Tabun E1, Karain | |
Nea. | Amud 1, CDV-Tour 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, Krapina 257.32, 257.33, Palomas 52, 92, 96, Quina 38, Shanidar 6, Spy 2 | |
Q3 | Qafzeh 6, 8, 9, Skhul 4, 5, Cro-Magnon 1, 4322, 4324, Dolní V?stonice 3, 13, 14, 16, 41, Eiv Gev 1, Minatogawa 1, 3, 4, Mlade? 27, 28, Nahal ‘En-Gev 1, Ohalo 2, Paviland, Pavlov 1, Sunghir 1, 4, Tianyuan 1, Willendorf 1 | |
80% | Q1 | KNM-ER 736, 737, 803a, 1472, 1481a, 1808mn, Kresna 11 |
Q21 | AT-SH F-X, XI, XIII, XIV, XVI, AT-1020, Gesher-B.-Y. 1, OH 28, Trinil II, III, IV | |
Q23 | Broken Hill E689, E690, E709, La Chaise-BD 5, Tabun E1 | |
Nea. | Amud 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Krapina 213, 214, Saint-Césaire 1, Spy 2, Tabun 1 | |
Q3 | Qafzeh 8, 9, Skhul 4, 5, 6, 9, Arene Candide 1, Barma Grande 2, Cro-Magnon 1, 4322, Dolní V?stonice 3, 13, 14, 16, 35, Ein Gev 1, Grotte-des-Enfants 4, Minatogawa 1, 2, 3, 4, Mlade? 27, 28, Nahal ‘En-Gev 1, Ohalo 2, Paglicci 25, Paviland 1, Pavlov 1, Rochette 2, Sunghir 1,Tianyuan 1, Veneri 1, 2 |
分组 | 标本号 | |
---|---|---|
50% | Q1 | BOU_VP_2/15,19/63, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-X, Gesher-B.-Y. 1, OH 28, Zhoukoudian 1, 2, 4, 5, 6 | |
Q23 | Berg Aukas 1, Broken Hill E690, Ehringsdorf 5, Karain E, La Chaise-BD 5, Lazeret 15/17, 25, Tabun E1, | |
Nea. | Amud 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, La Chaise Tour, Palomas 96, Pradelles LP 10-D13 362, Saint-Césaire 1, Shanidar 4, 5, 6, Spy 2, Tabun 1, 3 | |
Q3 | Qafzeh 3, 8, 9, Skhul 3, 4, 5, 6, 7, Barma Grande 2, Bausu da Ture 1, 2, Cro-Magnon 4322, 4323, 4324, 4325, Dolní V?stonice 3, 13, 14, 16, 35, Grotte-des-Enfants 3, 4, LaRochette, Liujiang, Minatogawa 1, 2, 3, 4, Mlade? 27, Nahal ‘En-Gev 1, Neussing, Ohalo 2, Ostuni 1, Paglicci 25, Parabita 1, 2, Paviland 1, Pavlov 1, Predmosti 3, 4, 14, Rochette 2, Sunghir 1, 4, Ust-lshim 1, Veneri 1, 2, Willendorf 1, Tianyuan 1, Zhoukoudian-UC 67, UC 68 | |
80% | Q21 | AT-SH F-X. Gesher-B.-Y. 1, OH 28, Zhoukoudian 1, 4 |
Q23 | Berg Aukas 1, Broken Hill E689, E690, E709, La Chaise-BD5, Lazeret 15/17, 25, Tabun E1 | |
Nea. | Amud 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Krapina 213, 214, Palomas 92, Saint-Césaire 1, Tabun 1 | |
Q3 | Qafzeh 8, Skhul 4, 5, 6, Arene Candide 1, Bausu da Ture 1, 2, Barma Grande 2, Cro-Magnon 4322, 4323, 4325, Dolní V?stonice 3, 13, 14, 16, 35, Grotte-des-Enfants 3, 4, Liujiang, Minatogawa 1, 2, 3, 4, Mlade? 27, 28, Nahal ‘En-Gev 1, Neuessing, Ohalo 2, Paglicci 25, Parabita 1, 2, Paviland 1, Pavlov 1, Predmosti 3, 4, 9, 10, 14, Rochette 2, Sunghir 1, 4, Tianyuan 1, Ust-lshim 1, Veneri 1, 2, Zhoukoudian-UC 67, UC 68 |
表2 几何形态测量中使用的更新世古人类对比标本
Tab.2 Comparative Pleistocene Hominin samples for Geometric Morphometrics
分组 | 标本号 | |
---|---|---|
50% | Q1 | BOU_VP_2/15,19/63, Kresna 11 |
Q21 | A?n Maarouf 1, AT-SH F-X, Gesher-B.-Y. 1, OH 28, Zhoukoudian 1, 2, 4, 5, 6 | |
Q23 | Berg Aukas 1, Broken Hill E690, Ehringsdorf 5, Karain E, La Chaise-BD 5, Lazeret 15/17, 25, Tabun E1, | |
Nea. | Amud 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Fond-de-Forêt 1, La Chaise Tour, Palomas 96, Pradelles LP 10-D13 362, Saint-Césaire 1, Shanidar 4, 5, 6, Spy 2, Tabun 1, 3 | |
Q3 | Qafzeh 3, 8, 9, Skhul 3, 4, 5, 6, 7, Barma Grande 2, Bausu da Ture 1, 2, Cro-Magnon 4322, 4323, 4324, 4325, Dolní V?stonice 3, 13, 14, 16, 35, Grotte-des-Enfants 3, 4, LaRochette, Liujiang, Minatogawa 1, 2, 3, 4, Mlade? 27, Nahal ‘En-Gev 1, Neussing, Ohalo 2, Ostuni 1, Paglicci 25, Parabita 1, 2, Paviland 1, Pavlov 1, Predmosti 3, 4, 14, Rochette 2, Sunghir 1, 4, Ust-lshim 1, Veneri 1, 2, Willendorf 1, Tianyuan 1, Zhoukoudian-UC 67, UC 68 | |
80% | Q21 | AT-SH F-X. Gesher-B.-Y. 1, OH 28, Zhoukoudian 1, 4 |
Q23 | Berg Aukas 1, Broken Hill E689, E690, E709, La Chaise-BD5, Lazeret 15/17, 25, Tabun E1 | |
Nea. | Amud 1, Chapelle-aux-Saints 1, Feldhofer 1, Ferrassie 1, 2, Krapina 213, 214, Palomas 92, Saint-Césaire 1, Tabun 1 | |
Q3 | Qafzeh 8, Skhul 4, 5, 6, Arene Candide 1, Bausu da Ture 1, 2, Barma Grande 2, Cro-Magnon 4322, 4323, 4325, Dolní V?stonice 3, 13, 14, 16, 35, Grotte-des-Enfants 3, 4, Liujiang, Minatogawa 1, 2, 3, 4, Mlade? 27, 28, Nahal ‘En-Gev 1, Neuessing, Ohalo 2, Paglicci 25, Parabita 1, 2, Paviland 1, Pavlov 1, Predmosti 3, 4, 9, 10, 14, Rochette 2, Sunghir 1, 4, Tianyuan 1, Ust-lshim 1, Veneri 1, 2, Zhoukoudian-UC 67, UC 68 |
图1 PA108三维虚拟复原 从左到右:前侧,后侧,内侧,外侧
Fig.1 Three-dimensional visual model of Lijiang left femur PA108 From left to right: anterior, posterior, medial, and lateral view
图2 PA108与一个完整的近现代人股骨标本对齐(左侧,蓝色:PA108,灰色:完整股骨)和骨干横断面(右侧)
Fig.2 Left: Lijiang femur (blue) superimposed onto one complete femur of recent modern human(grey); Right: Femoral diaphyseal cross-sections of Lijiang femur
图3 股骨中部(50%)和转子下(80%)横断面轮廓的标志点(红色)和半标志点(蓝色) P:后侧posterior,L:外侧lateral
Fig.3 Landmarks (read point) and semi-landmarks (blue points) of the geometric morphometric analysis on the midshaft (50%, left) and subtrochanteric (80%, right) cross-section contour
St | Sc | Ix | Iy | Imax | Imin | Zx | Zy | J | Zp | |
---|---|---|---|---|---|---|---|---|---|---|
35% | 607.56 | 339.37 | 23430.29 | 24590.17 | 24814.00 | 23206.45 | 1557.50 | 1608.61 | 48020.46 | 3025.11 |
50% | 576.61 | 429.42 | 24544.16 | 25719.01 | 25793.88 | 24469.29 | 1581.44 | 1821.63 | 50263.17 | 3152.13 |
65% | 635.80 | 442.18 | 25339.26 | 33490.95 | 33601.56 | 25228.65 | 1775.69 | 2155.66 | 58830.21 | 3741.69 |
80% | 683.21 | 417.64 | 22208.13 | 45382.20 | 46303.39 | 21286.95 | 1741.79 | 2485.77 | 67590.33 | 3637.94 |
表3 丽江古人类股骨化石PA108骨干横断面几何特征参数
Tab.3 CSG properties of Lijiang femur PA108
St | Sc | Ix | Iy | Imax | Imin | Zx | Zy | J | Zp | |
---|---|---|---|---|---|---|---|---|---|---|
35% | 607.56 | 339.37 | 23430.29 | 24590.17 | 24814.00 | 23206.45 | 1557.50 | 1608.61 | 48020.46 | 3025.11 |
50% | 576.61 | 429.42 | 24544.16 | 25719.01 | 25793.88 | 24469.29 | 1581.44 | 1821.63 | 50263.17 | 3152.13 |
65% | 635.80 | 442.18 | 25339.26 | 33490.95 | 33601.56 | 25228.65 | 1775.69 | 2155.66 | 58830.21 | 3741.69 |
80% | 683.21 | 417.64 | 22208.13 | 45382.20 | 46303.39 | 21286.95 | 1741.79 | 2485.77 | 67590.33 | 3637.94 |
图4 PA108与更新世古人类股骨骨干横断面骨密质面积百分比对比 Q1:早更新世,Q21:中更新世早期,Q23:中更新世晚期,Nea.:尼安德特人,Q3组:晚更新世现代人,PA108:丽江古人类左侧股骨
Fig.4 The comparative values of %CA measured at 35%, 50%, 65%, and 80% of the biomechanical length in PA108 and in five Pleistocene hominin groups From left to right Early Pleistocene (Q1), Early Middle Pleistocene (Q21), Late Middle Pleistocene (Q23), Neandertals (Nea.), Late Pleistocene Modern humans (Q3)
图5 PA108与更新世古人类股骨骨干力学形状指数对比 分组缩写见图4
Fig.5 The comparative values of Ix/Iy and Imax/Imin measured at 35%, 50%, 65%, and 80% of the biomechanical length in PA108 and in five Pleistocene hominin groups See Fig.4 caption for definitions of group names associated with abbreviations
图6 PA108和更新世古人类股骨中部几何形态测量 置信椭圆包含90%数据点,概率为0.9,UC:山顶洞,LJ:柳江,Lijiang:丽江PA108
Fig.6 The geometric morphometric analysis of femoral midshaft in PA108 and in five Pleistocene hominin groups Confidence ellipse contain 90% of the data points with 0.9 probability, Early Pleistocene (Q1), Early Middle Pleistocene (Q21), Late Middle Pleistocene (Q23), Neanderthals (Nea.), Late Pleistocene Modern humans (Q3), Upper Cave (UC), and Liujiang (LJ)
图7 基于PA108和更新世古人类股骨中部横断面轮廓平均形状数据欧氏距离的无根邻接树分析
Fig.7 Shape relationships of midshaft cross-sectional contour among PA108 and Pleistocene hominins Early Pleistocene (Q1), Early Middle Pleistocene (Q21), Late Middle Pleistocene (Q23), Neanderthals (NEA), and Late Pleistocene Modern humans (Q3)
分组 | Q1 | Q21 | Q23 | Nea. | Q3组 | PA108 | Total |
---|---|---|---|---|---|---|---|
Q1 | 2(66.7%) | 1(33.3% ) | 0 | 0 | 0 | 0 | 3(100.0%) |
Q21 | 0 | 7(77.8%) | 0 | 2(22.2%) | 0 | 0 | 9(100.0%) |
Q23 | 0 | 1(12.5%) | 1(12.5%) | 4(50.0%) | 2(25.0%) | 0 | 8(100.0%) |
Nea. | 0 | 0 | 2(11.1%) | 16(88.9%) | 0 | 0 | 18(100.0%) |
Q3 | 0 | 0 | 0 | 0 | 57(100%) | 0 | 57(100.0%) |
PA108 | 0 | 0 | 0 | 0 | 0 | 1(100%) | 1(100.0%) |
表4 股骨中部横断面轮廓形状典型变量分析的交叉验证结果(预测组)
Tab.4 The cross-validated results of the CVA at the femoral 50% cross-section
分组 | Q1 | Q21 | Q23 | Nea. | Q3组 | PA108 | Total |
---|---|---|---|---|---|---|---|
Q1 | 2(66.7%) | 1(33.3% ) | 0 | 0 | 0 | 0 | 3(100.0%) |
Q21 | 0 | 7(77.8%) | 0 | 2(22.2%) | 0 | 0 | 9(100.0%) |
Q23 | 0 | 1(12.5%) | 1(12.5%) | 4(50.0%) | 2(25.0%) | 0 | 8(100.0%) |
Nea. | 0 | 0 | 2(11.1%) | 16(88.9%) | 0 | 0 | 18(100.0%) |
Q3 | 0 | 0 | 0 | 0 | 57(100%) | 0 | 57(100.0%) |
PA108 | 0 | 0 | 0 | 0 | 0 | 1(100%) | 1(100.0%) |
图8 PA108和更新世古人类股骨转子下横断面几何形态测量 置信椭圆包含90%数据点,概率为0.9,LJ:柳江,UC:山顶洞,TY:田园洞,Lijiang:丽江PA108
Fig.8 The geometric morphometric analysis of femoral subtrochanteric cross-section in PA108 and in five Pleistocene hominin groups Confidence ellipse contain 90% of the data points with 0.9 probability, Early Middle Pleistocene (Q21), Late Middle Pleistocene (Q23), Neanderthals (Nea.), and Late Pleistocene Modern humans (Q3), Liujiang (LJ), Upper Cave (UC), TY (Tianyuan)
分组 | Q21 | Q23 | Nea. | Q3 | PA108 | Total |
---|---|---|---|---|---|---|
Q21 | 2(40.0%) | 1(20.0%) | 0 | 2(40.0%) | 0 | 5(100.0%) |
Q23 | 0 | 4(50.0%) | 1(12.5%) | 3(37.5%) | 0 | 8(100.0%) |
Nea. | 0 | 2(16.7%) | 8(66.7%) | 2(16.7%) | 0 | 12(100.0%) |
Q3 | 0 | 0 | 0 | 58(100%) | 0 | 58(100.0%) |
PA108 | 0 | 0 | 0 | 0 | 1(100%) | 1(100.0%) |
表5 股骨转子下横断面轮廓形状典型变量分析的交叉验证结果(预测组)
Tab.5 The cross-validated results of the CVA at the femoral 80% cross-section
分组 | Q21 | Q23 | Nea. | Q3 | PA108 | Total |
---|---|---|---|---|---|---|
Q21 | 2(40.0%) | 1(20.0%) | 0 | 2(40.0%) | 0 | 5(100.0%) |
Q23 | 0 | 4(50.0%) | 1(12.5%) | 3(37.5%) | 0 | 8(100.0%) |
Nea. | 0 | 2(16.7%) | 8(66.7%) | 2(16.7%) | 0 | 12(100.0%) |
Q3 | 0 | 0 | 0 | 58(100%) | 0 | 58(100.0%) |
PA108 | 0 | 0 | 0 | 0 | 1(100%) | 1(100.0%) |
分组 | 嵴指数Pilastric index | 扁平指数Platymeric index |
---|---|---|
Q1 | 96.7±13.0 (6) | 73.5±4.8 (5) |
Q2 | 96.5±12.1 (19) | 73.8±7.5 (12) |
Neandertals | 99.8±7.6 (22) | 80.1±5.2 (27) |
Q2 MH1 | 124.0±15.6 (12) | 85.8±12.0 (9) |
E/MUP2 | 115.9±13.0 (56) | 74.9±6.7 (62) |
LUP3 | 114.5±8.8 (25) | 80.2±12.3 (24) |
PA108 | 106.4 | 74.8 |
表6 传统线性测量指数对比[6, 25]
Tab.6 Comparative cross-sectional indices of linear measurement[6, 25]
分组 | 嵴指数Pilastric index | 扁平指数Platymeric index |
---|---|---|
Q1 | 96.7±13.0 (6) | 73.5±4.8 (5) |
Q2 | 96.5±12.1 (19) | 73.8±7.5 (12) |
Neandertals | 99.8±7.6 (22) | 80.1±5.2 (27) |
Q2 MH1 | 124.0±15.6 (12) | 85.8±12.0 (9) |
E/MUP2 | 115.9±13.0 (56) | 74.9±6.7 (62) |
LUP3 | 114.5±8.8 (25) | 80.2±12.3 (24) |
PA108 | 106.4 | 74.8 |
图9 PA108和更新世古人类骨密质厚度分布的形态示量图对比 上行:尼安德特人,下行:早期现代人
Fig.9 Morphometric mapping of cortical bone distribution in PA108 and other Pleistocene human specimens Upper line: Neanderthals, bottom line: early modern humans, using global scale. Thickness rendered by chromatic scale increasing from dark blue to red
[1] | 刘武, 吴秀杰, 邢松, 等. 中国古人类化石[M]. 北京: 科学出版社, 2014, 347-350 |
[2] | 李有恒. 云南丽江盆地一个第四纪哺乳类化石地点[J]. 古脊椎动物与古人类, 1961(2):143-149 |
[3] | 云南省博物馆. 云南丽江人类头骨的初步研究[J]. 古脊椎动物与古人类, 1977,15(2):157-161 |
[4] | 吴新智. 现代人起源的多地区进化学说在中国的实证[J]. 第四纪研究, 2006,26(5):702-709 |
[5] |
Puymerail L, Ruff CB, Bondioli L, et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java)[J]. Journal of Human Evolution, 2012,63:741-749
doi: 10.1016/j.jhevol.2012.08.003 URL pmid: 23036460 |
[6] | Trinkaus E, Ruff CB. Femoral and tibial diaphyseal cross-Sectional geometry in Pleistocene Homo[J]. PaleoAnthropology, 2012, 13-62 |
[7] |
Chevalier T, Özçelik K, Lumley M-A. et al. The endostructural pattern of a middle pleistocene human femoral diaphysis from the Karain E site (Southern Anatolia, Turkey)[J]. American Journal of Physical Anthropology, 2015,157:648-658
URL pmid: 26059778 |
[8] |
Ruff CB, Puymerail L, Macchiarelli R, et al. Structure and composition of the Trinil femora: Functional and taxonomic implications[J]. Journal of Human Evolution, 2015,80:147-158
doi: 10.1016/j.jhevol.2014.12.004 URL pmid: 25681015 |
[9] |
Rodríguez L, Carretero J.M, García-González R, et al. Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain)[J]. Journal of Human Evolution, 2018,117:1-12
doi: 10.1016/j.jhevol.2017.11.007 URL pmid: 29544620 |
[10] |
Bondioli L, Bayle P, Dean C, et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[J]. American Journal of Physical Anthropology, 2010,142:328-334
URL pmid: 20229503 |
[11] | Puymerail L, Volpato V, Debénath A, et al. Neanderthal partial femora diaphysis from the “Grotte de la Tour”, La Chaise-de-Vouthon (Charente, France) : Outer morphology and endostructural organization[J]. Comptes Rendus Palevol, 2012,11:581-593 |
[12] | Puymerail L, Condemi S, Debénath A. Analyse comparative structurale des diaphyses fémorales néandertaliennes BD 5 (MIS 5e) et CDV-Tour 1 (MIS 3) de La Chaise-de-Vouthon, Charente, France[J]. PALEO. Revue d’archéologie préhistorique, 2013,24:257-270 |
[13] |
Wei P, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quaternary International, 2017,434:48-56
doi: 10.1016/j.quaint.2015.10.099 URL |
[14] | Steele DG, MeKern TW. A method for assessment of maximum long bone length and living stature from fragmentary long bones[J]. American Journal of Physical Anthropology, 1969,31(2):215-227 |
[15] |
Trinkaus E. Epipaleolithic human appendicular remains from Ein Gev I, Israel[J]. Comptes Rendus Palevol, 2018,17(8):616-627
doi: 10.1016/j.crpv.2018.03.002 URL |
[16] |
Ruff CB. Long bone articular and diaphyseal structural in old world monkeys and apes. I: Locomotor effect[J]. American Journal of Physical Anthropology, 2002,119:305-342
doi: 10.1002/ajpa.10117 URL pmid: 12448016 |
[17] |
Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae-A biomechanical investigation: I. Method and general patterns of variation[J]. American Journal of Physical Anthropology, 1983,60:359-381
doi: 10.1002/ajpa.1330600308 URL pmid: 6846510 |
[18] |
Ruff CB, Trinkaus E, Walker A, et al. Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation[J]. American Journal of Physical Anthropology, 1993,91:21-53.
doi: 10.1002/ajpa.1330910103 URL pmid: 8512053 |
[19] | Ruff CB. Biomechanical analyses of archaeological human skeletons[A]. In: Katzenberg MA, Saunders SR, editors. Biological Anthropology of the Human Skeleton. Second Edi. Hoboken. New Jersey: John Wiley & Sons, Inc. 2008, 183-206 |
[20] | Shang H, Trinkaus E. The early modern human from Tianyuan Cave, China[M]. Texas A&M University Press, College Station, 2010, 96-131 |
[21] | Rohlf FJ. TpsDig2, digitize landmarks and outlines, version 2.10[CP/OL]. Department of Ecology and Evolution, State University of New York at Stony Brook, NY Available, 2006 |
[22] | Adams DC, Collyer M, Kaliontzopoulou A. Geometric Morphometric Analyses of 2D/3D Landmark Data[CP/OL], 2020 |
[23] | 吴汝康, 吴新智, 张振标. 人体测量方法[M]. 北京: 科学出版社, 1984, 61-64 |
[24] | Bräuer G. Anthropologie[A]. In: Knussman R(Ed.). Anthropologie. Fischer Verlag, Stuttgart, 1988, 160-232 |
[25] | Trinkaus E. The Appendicular Skeletal Remains of Oberkassel 1 and 2[A]. L Giemsch, RW Schmitz (Eds.), The Late Glacial Burial from Oberkassel Revisited. Verlag Phillip von Zabern, Darmstadt, 2015, 75-132 |
[26] |
Haapasalo H, Kontulainem S, Sievänen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: A peripheral quantitative computed tomography study of the upper arms of male tennis players[J]. Bone, 2000,27:351-357
doi: 10.1016/s8756-3282(00)00331-8 URL pmid: 10962345 |
[27] |
Warden SJ, Mantila SM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men[J]. Proceedings of the National Academy of Sciences, 2014,111:5337-5342
doi: 10.1073/pnas.1321605111 URL |
[28] |
Weatherholt AM, Warden SJ. Tibial bone strength is enhanced in the jump leg of collegiate-level jumping athletes: A within-subject controlled cross-sectional study[J]. Calcified Tissue International, 2016,98:129-139
URL pmid: 26543032 |
[29] |
Morimoto N, Ponce de Leon MS, Zollikofer CP. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: A test of Wolff’s law[J]. The Anatomical Record, 2011,294:589-609
URL pmid: 21328564 |
[30] | Trinkaus E. Early Modern Humans[J]. Annual Review of Anthropology, 2005,34:207-230 |
[31] | Trinkaus E. Modern Human versus Neandertal Evolutionary Distinctiveness[J]. Current Anthropology, 2006,47:597-620 |
[32] | 魏偏偏. 周口店田园洞古人类股骨形态功能分析[D]. 北京:中国科学院古脊椎动物与古人类研究所, 2016, 93-96 |
[33] |
Alexander G, Robling PhD, Felicia MH, et al. Improved Bone Structure and Strength After Long-Term Mechanical Loading Is Greatest if Loading Is Separated Into Short Bouts[J]. Journal of Bone and Mineral Research, 2002,17(8):1545-1554
URL pmid: 12162508 |
[34] | Stock JT, Pfeiffer SK. Long bone robusticity and subsistence behaviour among Later Stone Age foragers of the forest and fynbos biomes of South Africa[J]. Journal of Archaeological Science, 2004,31(7):999-1013 |
[35] |
Ruff CB. Biomechanics of the hip and birth in early Homo[J]. American Journal of Physical Anthropology, 1995,98(4):527-574
doi: 10.1002/ajpa.1330980412 URL pmid: 8599386 |
[1] | 饶慧芸. 古蛋白质分析在东亚古人类演化中的应用前景[J]. 人类学学报, 2022, 41(06): 1083-1096. |
[2] | 胡晓纯, 高星. 贵州马鞍山遗址1986年出土石制品初步研究[J]. 人类学学报, 2022, 41(05): 788-803. |
[3] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石的形态多样性及其演化意义[J]. 人类学学报, 2022, 41(04): 563-575. |
[4] | 魏偏偏, 张全超. 内蒙古和林格尔土城子农业人群与林西井沟子游牧人群股骨中部的生物力学对比[J]. 人类学学报, 2022, 41(02): 238-247. |
[5] | 魏偏偏, 赵昱浩, 何嘉宁. 辽宁建平古人类肱骨形态结构分析[J]. 人类学学报, 2021, 40(06): 943-954. |
[6] | 雷蕾, 贺乐天, 李大伟, 李浩. 三维几何形态测量方法在石制品分析中的应用[J]. 人类学学报, 2021, 40(06): 970-980. |
[7] | 马东东, 牛东伟, 裴树文, 李潇丽, 杨海勇, 王法岗. 蔚县盆地2017-2018年旧石器考古调查简报[J]. 人类学学报, 2021, 40(01): 128-136. |
[8] | 邢松, 周蜜, 潘雷. 东亚中更新世古人类下颌第二臼齿釉质-齿质连接面三维形状和釉质厚度分布[J]. 人类学学报, 2020, 39(04): 521-531. |
[9] | 赵昱浩, 周蜜, 魏偏偏, 邢松. 肱骨骨干骨密质厚度的二维可视化及其定量分析[J]. 人类学学报, 2020, 39(04): 632-647. |
[10] | 潘雷, 廖卫, 王伟, 刘建辉, 吉学平, 杨晓梅, 郝以鑫. 禄丰古猿蝴蝶种下第四前臼齿釉质-齿质交界面的三维几何形态[J]. 人类学学报, 2020, 39(04): 555-563. |
[11] | 董哲, 战世佳. 安徽省宣城麻村旧石器遗址调查及发掘简报[J]. 人类学学报, 2020, 39(01): 74-85. |
[12] | 别婧婧, 王社江, 夏楠, 鹿化煜, 王先彦, 弋双文, 夏文婷, 张改课, Mathew L. FOX, 张红艳, 卓海昕, 张文超. 陕西汉中洋县金水河口旧石器遗址出土石制品研究[J]. 人类学学报, 2019, 38(03): 344-361. |
[13] | LEE Heonjong, LEE Sangseok. 韩国旧石器时代晚期石叶工业的年代与特征[J]. 人类学学报, 2019, 38(03): 373-388. |
[14] | 夏文婷;王社江;夏楠;鹿化煜;王先彦;孙雪峰;张红艳;张文超;卓海昕;邢路达;于青瑶;冯武明. 汉中盆地龙岗寺遗址第3地点出土的石制品[J]. 人类学学报, 2018, 37(04): 529-541. |
[15] | 刘连强;王法岗;杨石霞;岳健平. 泥河湾盆地马梁遗址第10地点2016年出土石制品研究[J]. 人类学学报, 2018, 37(03): 419-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||