[1] |
Janecka JE, Miller W, Pringle TH, et al. Molecular and genomic data identify the closest living relative of primates[J]. Science, 2007,318(5851):792-794
URL
pmid: 17975064
|
[2] |
Li Q, Ni X. An Early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”[J]. Sci Rep, 2016,6:18627. DOI: 10.1038/srep18627
URL
pmid: 26766238
|
[3] |
Ni X, Qiu Z. Tupaiine treeshrews (Scadentia, Mammalia) from the Yuamnou Lufengpithecus locality of Yunnan, China[J]. Swiss J Palaeontol, 2012,131:51-60
|
[4] |
Zhou X, Sun F, Xu S, et al. The position of treeshrews in the mammalian tree: Comparing multi gene analysis with phylogenomic results leaves monophyly of Euarchonta doubtful[J]. Integr Zool, 2015,10:186-198
doi: 10.1111/1749-4877.12116
URL
pmid: 25311886
|
[5] |
Cao J, Yang EB, Su JJ, et al. The treeshrews: adjuncts and alternatives to primates as models for biomedical research[J]. J Med Primatol, 2003,32(3):123-130
doi: 10.1034/j.1600-0684.2003.00022.x
URL
pmid: 12823622
|
[6] |
Yao YG. Creating animal models, why not use the Chinese treeshrew (Tupaia belangeri chinensis)[J]? Zool Res, 2017,38(3):118-126
|
[7] |
Samuels BC, Siegwart JT, Zhan W. et al. A Novel Treeshrew (Tupaia Belangeri) Model of Glaucoma[J]. Invest Opthalmol Vis Sci, 2018,59:3136-3143
|
[8] |
Jiang LP, Shen QS, Yang CP, et al. Establishment of basal cell carcinoma animal model in Chinese tree shrew (Tupaia belangeri chinensis)[J]. Zool Res, 2017,38(4), 180-190
doi: 10.24272/j.issn.2095-8137.2017.045
URL
pmid: 28825448
|
[9] |
Ge GZ, Xia HJ, He BL, et al. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of treeshrew, an animal close to primates in evolution[J]. Int J Cancer, 2016,138:642-651
doi: 10.1002/ijc.29814
URL
pmid: 26296387
|
[10] |
Fan Y, Luo R, Su LY, et al. Does the Genetic Feature of the Chinese Tree Shrew (Tupaia belangeri chinensis) Support its Potential as a Viable Model for Alzheimer’s Disease Research?[J]. J Alzheimers Dis, 2018,61:1015-1028
doi: 10.3233/JAD-170594
URL
pmid: 29332044
|
[11] |
Tu Q, Yang D, Zhang X, et al. A novel pancreatic cancer model originated from transformation of acinar cells in adult tree shrew, a primate-like animal[J]. Dis Model Mech, 2019, 12:(4): dmm038703. DOI: 10.1242/dmm.038703
|
[12] |
Tang B, Wu T, Xiao SF, et al. Using Tree Shrews (Tupaia belangeri) as a Novel Animal Model of Liver Transplantation[J]. Curr Med Sci, 2018,38:1069-1074
URL
pmid: 30536071
|
[13] |
Yuan B, Yang C, Xia X, et al. The treeshrews is a promising model for the study of influenza B virus infection[J]. Virol J, 2019,16:77. DOI: 10.1186/s12985-019-1171-3
URL
pmid: 31174549
|
[14] |
Xiao J, Liu R, Chen CS. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model[J]. Zool Res, 2017,38(3):127-137
doi: 10.24272/j.issn.2095-8137.2017.033
URL
pmid: 28585436
|
[15] |
Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers[J]. Arch Biochem Biophys, 2014,561:3-12
doi: 10.1016/j.abb.2014.05.003
URL
pmid: 24832390
|
[16] |
Prideaux M, Findlay DM, Atkins GJ. Osteocytes: The master cells in bone modelling[J]. Curr Opin Pharmacol, 2016,28:24-30
URL
pmid: 26927500
|
[17] |
Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling[J]. Bone, 2008,42:606-615
doi: 10.1016/j.bone.2007.12.224
URL
pmid: 18280232
|
[18] |
Lewis KJ, Frikha-Benayed D, Louie J, et al. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo[J]. Proc Natl Acad Sci USA, 2017,114:11775-11780
doi: 10.1073/pnas.1707863114
URL
pmid: 29078317
|
[19] |
Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canaonical Wnt signalling[J]. J Biol Chem, 2005,280:19883-19887
URL
pmid: 15778503
|
[20] |
Li X, Liu P, Liu W, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation[J]. Nat Genet, 2005,37:945-952
URL
pmid: 16056226
|
[21] |
Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression[J]. Nat Med, 2011,17(10):1231-1234
URL
pmid: 21909105
|
[22] |
Gluhak-Heinrich J, Pavlin D, Yang W, et al. MEPE expression in osteocytes during orthodontic tooth movement[J]. Arch Oral Biol, 2007,52(7):684-690
URL
pmid: 17270144
|
[23] |
Hadjiagyrou M, Rightmire EP, Ando T, et al. The E11 osteoblastic lineage marker is differentially expressed during fracture healing[J]. Bone, 2001,29(2):149-154
doi: 10.1016/s8756-3282(01)00489-6
URL
pmid: 11502476
|
[24] |
Toyosowa S, Shintani S, Fujiwara T, et al. Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts[J]. J Bone Miner Res, 2001,16(11):2017-2026
doi: 10.1359/jbmr.2001.16.11.2017
URL
pmid: 11697797
|
[25] |
Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism[J]. Nat Genet, 2006,38(11):1310-1315
doi: 10.1038/ng1905
URL
pmid: 17033621
|
[26] |
Kalajzic I, Matthews BG, Torreggiani E, et al. In vitro and in vivo approaches to study osteocyte biology[J]. Bone, 2013,54(2):296-306
doi: 10.1016/j.bone.2012.09.040
URL
pmid: 23072918
|
[27] |
Kubek DJ, Gattone VH II, Allen MR. Methodological assessment for Acid Etching for visualizing the osteocyte lacunar- canalicular networks using Scanning Electron Microscopy[J]. Microscopy Research and Technique, 2010,73:182-186
URL
pmid: 19725069
|
[28] |
Ren Y, Lin S, Jing Y, et al. A novel way to statistically analyze morphologic changes in Dmp 1 null osteocytes[J]. Connect Tissue Res, 2014,55 Suppl: 129-133
doi: 10.3109/03008207.2014.923879
URL
pmid: 25158197
|
[29] |
Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery[J]. Comp Med, 2011,61:76-85
URL
pmid: 21819685
|