人类学学报 ›› 2020, Vol. 39 ›› Issue (04): 717-726.doi: 10.16359/j.cnki.cn11-1963/q.2020.0047
收稿日期:
2020-07-30
修回日期:
2020-09-27
出版日期:
2020-11-15
发布日期:
2020-10-30
作者简介:
王伟(1966-),男,湖北巴东县人,山东大学文化遗产研究院教授,主要从事古人类学和旧石器考古学研究。Email:基金资助:
Received:
2020-07-30
Revised:
2020-09-27
Online:
2020-11-15
Published:
2020-10-30
摘要:
巨猿是中国南方更新世特有的大型猿类,因其巨大的牙齿和颌骨被认为是迄今生活在地球上体型最大的猿类。迄今为止,年代学和生物地层学证据显示巨猿的生存年代2~0.3 MaBP。由于中新世晚期—上新世时期化石记录的缺失,有关巨猿的起源和演化一直存在诸多争论。2019年,《自然》杂志报道广西吹风洞早更新世早期(1.9 MaBP)巨猿牙齿化石的古蛋白质研究[
中图分类号:
王伟. 利用古蛋白技术分析巨猿演化地位的评述[J]. 人类学学报, 2020, 39(04): 717-726.
WANG Wei. Phylogenetic reconstruction of Gigantopithecus blacki using palaeoproteomic analysis[J]. Acta Anthropologica Sinica, 2020, 39(04): 717-726.
[1] |
Welker F, Ramos-Madrigal J, Kuhlwilm M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine[J]. Nature, 2019,576:262-265
URL pmid: 31723270 |
[2] |
Zhang Y, Harrison T. Gigantopithecus blacki: a giant ape from the Pleistocene of Asia revisited[J]. American Journal of Physical Anthropology, 2017,162:153-177
doi: 10.1002/ajpa.23150 URL pmid: 28105715 |
[3] | 邓成龙, 郝青振, 郭正堂, 等. 中国第四纪综合地层和时间框架[J]. 中国科学:地球科学, 2018,49(1):330-52 |
[4] | Ciochon R, Long VT, Larick R, et al. Dated co-occurrence of Homo erectus and Gigantopithecus from Tham Khuyen cave, Vietnam[J]. Proceedings of the National Academy of Sciences, 1996,93(7):3016-3020 |
[5] | Von Koenigswald G. Eine fossile Säugetierfauna mit Simia aus Südchina[J]. Proceedings of the Koniklijke Nederlandse Akademie van Wetenschappen Series B, 1935,38:872-879 |
[6] | Weidenreich F. Giant early man from Java and South China[M]. Anthropological Papers of the American Museum of Natural History, 1945,40:1-134 |
[7] | Dahlberg AA. Gigantopithecus blacki von Koenigswald, a giant fossil hominoid from the Pleistocene of southern China[J]. Anthropological Papers of the American Museum of Natural History, 1952,43:292-325. |
[8] | Pei W. Giant ape's jaw bone discovered in China[J]. American Anthropologist, 1957,59(5):834-838 |
[9] | Pei W. Discovery of Gigantopithecus mandibles and other material in Liu-Cheng district of Central Kwangsi in South China[J]. Vert Palasiatica, 1957,1(2):65-71 |
[10] | 吴汝康. 巨猿下颌骨和牙齿化石[M]. 科学出版社, 1962, 1-94 |
[11] | Simons E, Pilbeam D. Preliminary revision of the Dryopithecinae (Pongidae, Anthropoidea)[J]. Folia Primatol, l965, 3:8l-l52 |
[12] |
Pilbeam D. Gigantopithecus and the origins of Hominidae[J]. Nature, 1970,225:516-519
URL pmid: 5460844 |
[13] |
Simons E, Ettel PC. Gigantopithecus[J]. Scientific American, 1970,222(1):76-87
doi: 10.1038/scientificamerican017076 URL pmid: 5410260 |
[14] |
Frayer DW. Gigantopithecus and its relationship to Australopithecus[J]. American Journal of Physical Anthropology, 1973,39(3):413-426
doi: 10.1002/ajpa.1330390310 URL pmid: 4796262 |
[15] | Robinson J, Steudel K. Multivariate discriminant analysis of dental data bearing on early hominid affinities[J]. Journal of Human Evolution, 1973,2(6):509-527 |
[16] | Eckhardt RB. Gigantopithecus as a hominid ancestor[J]. Anthropologischer Anzeiger, 1973,34:1-8 |
[17] | Eckhardt RB. Gigantopithecus as a hominid[C]. In R. L. Tuttle (Ed.), Paleoanthropology, morphology and palaeoecology. Mouton: The Hague, 1975: 105-127 |
[18] |
Gelvin BR. Morphometric affinities of Gigantopithecus[J]. American Journal of Physical Anthropology, 1980,53(4):541-68
doi: 10.1002/ajpa.1330530410 URL pmid: 7468790 |
[19] | Simons EL. Gigantopithecus (Pongidae, Hominoidea). A new species from north India[J]. Postilla, 1969,138:1-18 |
[20] | Patnaik R. Indian Neogene Siwalik mammalian biostratigraphy: An overview[A]. In: X. Wang, L. J. Flynn, M. Fortelius (Eds.), Fossil mammals of Asia: Neogene biostratigraphy and chronology[C]. New York: Columbia University Press, 2013: 423-444 |
[21] |
Pillans B, Williams M, Cameron D, et al. Revised correlation of the Haritalyangar magnetostratigraphy, Indian Siwaliks: implications for the age of the Miocene hominids Indopithecus and Sivapithecus, with a note on a new hominid tooth[J]. Journal of Human Evolution, 2005,48(5):507-15
URL pmid: 15857653 |
[22] | Pilgrim GE. New Siwalik primates and their bearing on the question of the evolution of man and the Anthropoidea[J]. Records of the Geological Survey of India, 1915,45:1-74 |
[23] | Von Koenigswald G. Bemerkungen zu Dryopithecus giganteus Pilgrim[J]. Eclogae Geologicae Helvetiae, 1950,42:515-519 |
[24] |
Von Koenigswald G. Remarks on Indopithecus: A reply[J]. American Journal of Physical Anthropology, 1951,9(4):461-464
doi: 10.1002/ajpa.1330090407 URL pmid: 14903070 |
[25] |
Hooijer D. Questions relating to a new large anthropoid ape from the Mio-Pliocene of the Siwaliks[J]. American Journal of Physical Anthropology, 1951,9(1):79-96
doi: 10.1002/ajpa.1330090107 URL pmid: 14819270 |
[26] | Simons EL, Pilbeam DR. Preliminary Revision of The Dryopithecinae (Pongidae, Anthropoidea)[J]. Folia primatologica, 1965,3(2-3):81-98 |
[27] |
Andrews P. Hominoid evolution[J]. Nature, 1982,295(5846):185-186
doi: 10.1038/295185a0 URL pmid: 6799830 |
[28] | Andrews P, Cronin J. The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan[J]. Nature, 1982,297:541-546 |
[29] |
Pilbeam D. New hominoid skull material from the Miocene of Pakistan[J]. Nature, 1982,295(5846):232-234
URL pmid: 6799831 |
[30] | Cameron D. A functional and phylogenetic interpretation of the late Miocene Siwalik hominid Indopithecus and the Chinese Pleistocene hominid Gigantopithecus[J]. Himalayan Geology, 2003,24:19-28 |
[31] | Begun DR. How to identify (as opposed to define) a homoplasy: Examples from fossil and living great apes[J]. Journal of Human Evolution, 2007,52(5):559-572 |
[32] | Begun DR. Miocene hominids and the origins of the African apes and humans[J]. Annual Review of Anthropology, 2010,39:67-84 |
[33] | Fleagle JG. Primate adaptation and evolution[M]. San Diego: Academic Press, 2013 |
[34] |
Harrison T. Apes among the tangled branches of human origins[J]. Science, 2010,327:532-534
doi: 10.1126/science.1184703 URL pmid: 20110491 |
[35] | Kelley J. The hominoid radiation in Asia[C]. In W. C. Hartwig (Ed.), The primate fossil record. Cambridge: Cambridge University Press, 2013: 369-384 |
[36] |
Miller SF, White JL, Ciochon RL. Assessing mandibular shape variation within Gigantopithecus using a geometric morphometric approach[J]. American Journal of Physical Anthropology, 2008,137(2):201-212
doi: 10.1002/ajpa.20856 URL pmid: 18615565 |
[37] | Hendy J. Ancient metaproteomics: a novel approach for understanding disease and diet in the archaeological record[D]. University of York, 2015, 1-463 |
[38] |
Bada JL, Miller SL. Ammonium ion concentration in the primitive ocean[J]. Science, 1968,159:423-425
doi: 10.1126/science.159.3813.423 URL pmid: 5634660 |
[39] | Terwilliger TC, Clarke S. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells[J]. Journal of Biological Chemistry, 1981,256(6):3067-3076 |
[40] | Daniel RM, Dines M, Petach HH. The denaturation and degradation of stable enzymes at high temperatures[J]. Biochemical Journal, 1996,317(1):1-11 |
[41] |
Van Doorn NL, Wilson J, Hollund H, et al. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration[J]. Rapid Communications in Mass Spectrometry, 2012,26(19):2319-2327
doi: 10.1002/rcm.6351 URL pmid: 22956324 |
[42] |
Solazzo C, Wilson J, Dyer JM, et al. Modeling deamidation in sheep α-keratin peptides and application to archeological wool textiles[J]. Analytical chemistry, 2014,86(1):567-575
doi: 10.1021/ac4026362 URL pmid: 24299235 |
[43] | Abelson PH. Amino acids in fossils[J]. Science, 1954,119:576 |
[44] |
Herman A, Addadi L, Weiner S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins[J]. Nature, 1988,331:546-548
doi: 10.1038/331546a0 URL |
[45] | Walton D. Degradation of intracrystalline proteins and amino acids in fossil brachiopods[J]. Organic Geochemistry, 1998,28(6):389-410 |
[46] | Walton D. Problems For Taxonomic Analysis Using Intracrystalline Animo Acids: An Example Using Brachiopods[J]. Palaeontology, 1998,41(4):753-770 |
[47] | Robbins L, Muyzer G, Brew K. Macromolecules from Living and Fossil Biominerals[A]. Organic Geochemistry[M]. Springer US, 1993: 799-816 |
[48] |
Lowenstein JM, Sarich VM, Richardson B J. Albumin systematics of the extinct mammoth and Tasmanian wolf[J]. Nature, 1981,291:409-411
URL pmid: 7017420 |
[49] |
Ostrom PH, Schall M, Gandhi H, et al. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2000,64(6):1043-1050
doi: 10.1016/S0016-7037(99)00381-6 URL |
[50] |
Cappellini E, Collins MJ, Gilbert MTP. Unlocking ancient protein palimpsests[J]. Science, 2014,343:1320-1322
doi: 10.1126/science.1249274 URL pmid: 24653025 |
[51] |
Phizicky E, Bastiaens PI, Zhu H, et al. Protein analysis on a proteomic scale[J]. Nature, 2003,422:208-215
doi: 10.1038/nature01512 URL pmid: 12634794 |
[52] |
Tyers M, Mann M. From genomics to proteomics[J]. Nature, 2003,422:193-197
doi: 10.1038/nature01510 URL pmid: 12634792 |
[53] |
Bensimon A, Heck AJ, Aebersold R. Mass spectrometry-based proteomics and network biology[J]. Annual Review of Biochemistry, 2012,81:379-405
doi: 10.1146/annurev-biochem-072909-100424 URL |
[54] |
Steen H, Mann M. The ABC's (and XYZ's) of peptide sequencing[J]. Nature reviews Molecular cell biology, 2004,5(9):699-711
URL pmid: 15340378 |
[55] |
Dobberstein RC, Collins MJ, Craig OE, et al. Archaeological collagen: Why worry about collagen diagenesis?[J]. Archaeological and Anthropological Sciences, 2009,1(1):31-42
doi: 10.1007/s12520-009-0002-7 URL |
[56] |
Service RF. Protein power[J]. Science, 2015,349:372-373
doi: 10.1126/science.349.6246.372 URL pmid: 26206914 |
[57] |
Brown S, Higham T, Slon V, et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis[J]. Scientific reports, 2016,6:23559
doi: 10.1038/srep23559 URL pmid: 27020421 |
[58] |
Welker F, Hajdinjak M, Talamo S, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne[J]. Proceedings of the National Academy of Sciences, 2016,113(40):11162-11167
doi: 10.1073/pnas.1605834113 URL |
[59] |
Buckley M, Collins M, Thomas-Oates J, et al. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009,23(23):3843-3854
URL pmid: 19899187 |
[60] |
Richter KK, Wilson J, Jones A K, et al. Fish’n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments[J]. Journal of Archaeological Science, 2011,38(7):1502-1510
doi: 10.1016/j.jas.2011.02.014 URL |
[61] |
Welker F, Collins MJ, Thomas JA, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates[J]. Nature, 2015,522(7554):81-84
doi: 10.1038/nature14249 URL pmid: 25799987 |
[62] |
Cappellini E, Welker F, Pandolfi L, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny[J]. Nature, 2019,574(7776):103-107
doi: 10.1038/s41586-019-1555-y URL pmid: 31511700 |
[63] |
Corthals A, Koller A, Martin DW, et al. Detecting the immune system response of a 500 year-old Inca mummy[J]. PLoS ONE, 2012,7(7):e41244
doi: 10.1371/journal.pone.0041244 URL pmid: 22848450 |
[64] |
Maixner F, Overath T, Linke D, et al. Paleoproteomic study of the Iceman’s brain tissue[J]. Cellular and Molecular Life Sciences, 2013,70(19):3709-3722
doi: 10.1007/s00018-013-1360-y URL |
[65] |
Kempson IM, Skinner W, Kirkbride P, et al. Time-of-flight secondary ion mass spectrometry analysis of hair from archaeological remains[J]. European Journal of Mass Spectrometry, 2003,9(6):589-597
doi: 10.1255/ejms.584 URL pmid: 15100469 |
[66] | Buckley M, Kansa SW. Collagen fingerprinting of archaeological bone and teeth remains from Domuztepe, South Eastern Turkey[J]. Archaeological and Anthropological Sciences, 2011,3(3):271-280 |
[67] | Warinner C, Hendy J, Speller C, et al. Direct evidence of milk consumption from ancient human dental calculus[J]. Scientific Reports, 2014,4(1):1-6 |
[68] | Stewart NA, Molina GF, Issa JPM, et al. The identification of peptides by nanoLC-MS/MS from human surface tooth enamel following a simple acid etch extraction[J]. RSC Advances, 2016,6(66):61673-61679 |
[69] |
Chen F, Welker F, Shen CC, et al. A late middle Pleistocene denisovan mandible from the Tibetan plateau[J]. Nature, 2019,569(7756):409-412
doi: 10.1038/s41586-019-1139-x URL pmid: 31043746 |
[70] |
Buckley M, Melton ND, Montgomery J. Proteomics analysis of ancient food vessel stitching reveals> 4000-year-old milk protein[J]. Rapid Communications in Mass Spectrometry, 2013,27(4):531-538
URL pmid: 23322659 |
[71] |
Solazzo C, Fitzhugh WW, Rolando C, et al. Identification of Protein Remains in Archaeological Potsherds by Proteomics[J]. Analytical Chemistry, 2008,80(12):4590-4597
doi: 10.1021/ac800515v URL pmid: 18494502 |
[72] |
Hendy J, Colonese AC, Franz I, et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers[J]. Nature Communications, 2018,9(1):1-10
doi: 10.1038/s41467-017-02088-w URL pmid: 29317637 |
[73] | Solazzo C, Dyer JM, Clerens S, et al. Proteomic evaluation of the biodegradation of wool fabrics in experimental burials[J]. International Biodeterioration & Biodegradation, 2013,80:48-59 |
[74] |
von Holstein IC, Ashby SP, Van Doorn NL, et al. Searching for Scandinavians in pre-Viking Scotland: molecular fingerprinting of Early Medieval combs[J]. Journal of Archaeological Science, 2014,41:1-6
doi: 10.1016/j.jas.2013.07.026 URL |
[75] |
Stewart JR, Allen RB, Jones AK, et al. Walking on Eggshells: A Study of Egg Use in Anglo-Scandinavian York Based on Eggshell Identification Using ZooMS[J]. International Journal of Osteoarchaeology, 2014,24(3):247-255
doi: 10.1002/oa.2362 URL |
[76] |
Oonk S, Cappellini E, Collins MJ. Soil proteomics: An assessment of its potential for archaeological site interpretation[J]. Organic Geochemistry, 2012,50:57-67
doi: 10.1016/j.orggeochem.2012.06.012 URL |
[77] |
Hong C, Jiang H, Lü E, et al. Identification of milk component in ancient food residue by proteomics[J]. PLoS ONE, 2012,7(5):e37053
doi: 10.1371/journal.pone.0037053 URL pmid: 22615887 |
[78] |
Yang Y, Shevchenko A, Knaust A, et al. Proteomics evidence for kefir dairy in Early Bronze Age China[J]. Journal of Archaeological Science, 2014,45:178-186
doi: 10.1016/j.jas.2014.02.005 URL |
[79] |
Bianucci R, Mattutino G, Lallo R, et al. Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period[J]. Journal of Archaeological Science, 2008,35(7):1880-1885
doi: 10.1016/j.jas.2007.11.019 URL |
[80] |
Bianucci R, Rahalison L, Peluso A, et al. Plague immunodetection in remains of religious exhumed from burial sites in central France[J]. Journal of Archaeological Science, 2009,36(3):616-621
doi: 10.1016/j.jas.2008.10.007 URL |
[81] |
Miller RL, Armelagos G, Ikram S, et al. Palaeoepidemiology of Schistosoma infection in mummies[J]. British Medical Journal, 1992,304:555-556
doi: 10.1136/bmj.304.6826.555 URL pmid: 1559065 |
[82] |
Kolman CJ, Centurion-Lara A, Lukehart SA, et al. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen[J]. Journal of Infectious Diseases, 1999,180(6):2060-2063
URL pmid: 10558971 |
[83] |
Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions[J]. Nature Genetics, 2013,45(4):450-455
URL pmid: 23416520 |
[84] |
Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity[J]. Nature Genetics, 2014,46(4):336-344
URL pmid: 24562188 |
[85] | Warinner C, Speller C, Collins MJ. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015,370:20130376 |
[86] |
Sun L, Deng C, Wang W, et al. Magnetostratigraphy of Plio-Pleistocene fossiliferous cave sediments in the Bubing Basin, southern China[J]. Quaternary Geochronology, 2017,37:68-81
doi: 10.1016/j.quageo.2016.09.007 URL |
[87] |
Wang W, Richard P, Yuan BY, et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China[J]. Journal of Human Evolution, 2007,52(4):370-379
doi: 10.1016/j.jhevol.2006.10.003 URL |
[88] |
Wang W, Liao W, Li D, et al. Early Pleistocene large-mammal fauna associated with Gigantopithecus at Mohui Cave, Bubing Basin, South China[J]. Quaternary International, 2014,354:122-130
doi: 10.1016/j.quaint.2014.06.036 URL |
[89] |
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips[J]. Nature Protocols, 2007,2(8):1896-1906
URL pmid: 17703201 |
[90] |
Mackie M, Rüther P, Samodova D, et al. Palaeoproteomic profiling of conservation layers on a 14th century Italian wall painting[J]. Angewandte Chemie International Edition, 2018,57(25):7369-7374
doi: 10.1002/anie.201713020 URL pmid: 29603563 |
[91] |
Besenbacher S, Hvilsom C, Marques-Bonet T, et al. Direct estimation of mutations in great apes reconciles phylogenetic dating[J]. Nature Ecology & Evolution, 2019,3(2):286-292
doi: 10.1038/s41559-018-0778-x URL pmid: 30664699 |
[92] |
Langergraber KE, Prüfer K, Rowney C, et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution[J]. Proceedings of the National Academy of Sciences, 2012,109(39):15716-15721
doi: 10.1073/pnas.1211740109 URL |
[1] | 张月书, 李锋, 陈福友, 仪明洁, 高星. 泥河湾盆地东谷坨遗址6A2层的形成过程[J]. 人类学学报, 2023, 42(01): 61-74. |
[2] | 饶慧芸. 古蛋白质分析在东亚古人类演化中的应用前景[J]. 人类学学报, 2022, 41(06): 1083-1096. |
[3] | 王元, 王一飒, 王奕迪, 秦超, 秦大公, 金昌柱. 广西扶绥岩亮洞与巨猿伴生的鼠亚科及其动物群的层序对比[J]. 人类学学报, 2021, 40(06): 1041-1054. |
[4] | 同号文, 张贝, 陈曦, 王晓敏, 孙吉嘉. 泥河湾盆地早更新世山神庙咀遗址动物群及其时代意义[J]. 人类学学报, 2021, 40(03): 469-489. |
[5] | 董为, 白炜鹏. 中国境内与巨猿伴生的偶蹄类化石[J]. 人类学学报, 2021, 40(03): 490-502. |
[6] | 夏文婷;王社江;夏楠;鹿化煜;王先彦;孙雪峰;张红艳;张文超;卓海昕;邢路达;于青瑶;冯武明. 汉中盆地龙岗寺遗址第3地点出土的石制品[J]. 人类学学报, 2018, 37(04): 529-541. |
[7] | 刘连强;王法岗;杨石霞;岳健平. 泥河湾盆地马梁遗址第10地点2016年出土石制品研究[J]. 人类学学报, 2018, 37(03): 419-427. |
[8] | 裴树文;贾真秀;马东东;马宁;李潇丽. 泥河湾盆地麻地沟E5旧石器地点的遗址成因与石器技术[J]. 人类学学报, 2016, 35(04): 493-508. |
[9] | 王元;秦大公;严亚玲;金昌柱. 广西崇左泊岳山巨猿洞早更新世的鼠科化石[J]. 人类学学报, 2016, 35(04): 561-571. |
[10] | 王法岗. 泥河湾盆地南山边遗址发现的旧石器[J]. 人类学学报, 2016, 35(03): 331-342. |
[11] | 贾真秀;裴树文;马宁;张兴龙. 泥河湾盆地麻地沟E6和E7旧石器地点发掘简报[J]. 人类学学报, 2016, 35(03): 343-358. |
[12] | 徐钦琦;金昌柱;张颖奇;王元;朱敏;严亚玲;王乃文;何希贤;李素萍. 关于广西崇左地区早更新世的三次生物事件[J]. 人类学学报, 2016, 35(01): 121-124. |
[13] | 陈曦;同号文. 泥河湾山神庙嘴化石点直隶狼埋藏学研究[J]. 人类学学报, 2015, 34(04): 553-564. |
[14] | 卫奇;裴树文;冯兴无;敖红;贾真秀. 泥河湾盆地上沙嘴石制品[J]. 人类学学报, 2015, 34(02): 139-148. |
[15] | 严亚玲;金昌柱;朱敏;刘毅弘;刘进余. 广西扶绥岩亮洞早更新世独角犀年龄结构的分析[J]. 人类学学报, 2014, 33(04): 534-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||