人类学学报 ›› 2021, Vol. 40 ›› Issue (06): 943-954.doi: 10.16359/j.cnki.cn11-1963/q.2020.0069
收稿日期:
2020-07-20
修回日期:
2020-08-27
出版日期:
2021-12-15
发布日期:
2020-11-30
作者简介:
魏偏偏,博士后。Email: 基金资助:
WEI Pianpian1,2(), ZHAO Yuhao3,4,5, HE Jianing6
Received:
2020-07-20
Revised:
2020-08-27
Online:
2021-12-15
Published:
2020-11-30
摘要:
1957年,在辽宁省建平县发现了一根古人类肱骨化石,编号PA103。通过同一批龙骨中筛选的哺乳动物化石,吴汝康推断PA103应该为更新世晚期古人类,并对该化石进行了表面形态特征观察和描述。为了对PA103化石的内外结构进行更全面的了解,除了线性测量数据的对比,本文还通过计算机断层扫描技术,结合生物力学和形态示量图分析对建平古人类右侧肱骨化石PA103进行了分析。通过本研究发现,PA103骨干横断面的生物力学粗壮度和力学形状指数明显小于尼安德特人,而与同时期欧亚大陆古人类不利手侧最为接近,这说明建平人右侧肱骨可能不是惯用手,同时,建平人的行为活动应该与同时期同地区的古人类处于同一水平,而小于尼安德特人。整体来看,PA103骨干骨密质厚度和截面惯性矩与近现代人的分布模式较为接近,除局部数值增大外,其整体数值小于近现代人的平均水平,这可能与遗传或行为活动有关,由于缺少古人类化石对比数据,更详细的了解还需后期开展更多相关的研究。
中图分类号:
魏偏偏, 赵昱浩, 何嘉宁. 辽宁建平古人类肱骨形态结构分析[J]. 人类学学报, 2021, 40(06): 943-954.
WEI Pianpian, ZHAO Yuhao, HE Jianing. Structural properties of humeral remains from Jianping, Liaoning province[J]. Acta Anthropologica Sinica, 2021, 40(06): 943-954.
分组/Group | 标本号/No. |
---|---|
尼安德特人/ Neandertals | La Chapelle-aux-S. 1, La Ferrassie 1, La Ferrassie 2, Kebara 2, Lezetxiki 1, Palomas 92, Palomas 96, La Quina 5, Regourdou 1, St.-Césaire 1, Shanidar 3, Shanidar 4, Shanidar 6, Spy 2, Tabun 1 |
旧石器中期现代人/ Middle Paleolithic modern humans | Qafzeh 8, Qafzeh 9, Skhul 2, Skhul 4, Skhul 5 |
旧石器晚期早/中段现代人/ Early/Middle Upper Paleolithic | Barma Grande 5, Bausu da Ture 2, Cro-Magnon 4294, Cro-Magnon 4293, Dolní Věstonice 3, Dolní Věstonice 13, Dolní Věstonice 14, Dolní Věstonice 16, Grotte-des-Enfants 4, Grotte-des-Enfants 5, Mladeč 24, Mittlere Klause 1, Nazlet Khater 2, Nahal En'Gev 1, Ostuni 1, Paglicci 25, Pataud 3, Pataud 5, Paviland 1, Pavlov 1, Předmostí 3, Předmostí 4, Předmostí 9, Předmostí 10, Předmostí 14, Sunghir 1, Tianyuan1 |
欧亚大陆西部旧石器晚期晚段现代人/ Western Eurasia Late Upper Paleolithic | Arene Candide 2, Arene Candide 3, Arene Candide 4, Arene Candide 5, Arene Candide 10, Arene Candide 12, Arene Candide 14, Cap Blanc 1, Chancelade 1, Continenza 1, Ein Gev 1, Farincourt 1, Lafaye 1, Laugerie Basse unn., Madeleine 1, Mataha F-81, Neve David 1, Oberkassel 2, Ohalo 2, Peyrat 5, Placard 16, Romanelli 1, Romanelli 4, Romito 1, Romito 3, Romito 4, St-Germain-la-R. 4, San Teodoro 1, Villabruna 1 |
欧亚大陆东部旧石器晚期晚段现代人/ Eastern Eurasia Late Upper Paleolithic | Minatogawa 1, Minatogawa 2, Minatogawa 3, Minatogawa 4, Tam Hang 2, Tam Hang 3, Tam Hang 7, Tam Hang 11, Tam Hang 13, Tam Hang 14 |
非洲北部旧石器晚期晚段现代人/ North Africa Late Upper Paleolithic | Afalou 1, Afalou 2, Afalou 3, Afalou 10, Afalou 11, Afalou 13, Afalou 25, Afalou 27, Afalou 28, Sahaba 10, Sahaba 16, Sahaba 19, Sahaba 20, Sahaba 22, Sahaba 25, Sahaba 28, Sahaba 38, Sahaba 39, Sahaba 40, Sahaba 102, Wadi Halfa 1, Wadi Halfa 3, Wadi Halfa 11, Wadi Halfa 12, Wadi Halfa 14, Wadi Halfa 24, Wadi Halfa 25, Wadi Halfa 26, Wadi Halfa 28, Wadi Halfa 31, Wadi Halfa 32, Wadi Halfa 34, Wadi Halfa 36, Wadi Halfa 37 |
表1 尼安德特人和旧石器中晚期古人类对比标本
Tab.1 Neandertal, Middle and Upper Paleolithic comparative samples
分组/Group | 标本号/No. |
---|---|
尼安德特人/ Neandertals | La Chapelle-aux-S. 1, La Ferrassie 1, La Ferrassie 2, Kebara 2, Lezetxiki 1, Palomas 92, Palomas 96, La Quina 5, Regourdou 1, St.-Césaire 1, Shanidar 3, Shanidar 4, Shanidar 6, Spy 2, Tabun 1 |
旧石器中期现代人/ Middle Paleolithic modern humans | Qafzeh 8, Qafzeh 9, Skhul 2, Skhul 4, Skhul 5 |
旧石器晚期早/中段现代人/ Early/Middle Upper Paleolithic | Barma Grande 5, Bausu da Ture 2, Cro-Magnon 4294, Cro-Magnon 4293, Dolní Věstonice 3, Dolní Věstonice 13, Dolní Věstonice 14, Dolní Věstonice 16, Grotte-des-Enfants 4, Grotte-des-Enfants 5, Mladeč 24, Mittlere Klause 1, Nazlet Khater 2, Nahal En'Gev 1, Ostuni 1, Paglicci 25, Pataud 3, Pataud 5, Paviland 1, Pavlov 1, Předmostí 3, Předmostí 4, Předmostí 9, Předmostí 10, Předmostí 14, Sunghir 1, Tianyuan1 |
欧亚大陆西部旧石器晚期晚段现代人/ Western Eurasia Late Upper Paleolithic | Arene Candide 2, Arene Candide 3, Arene Candide 4, Arene Candide 5, Arene Candide 10, Arene Candide 12, Arene Candide 14, Cap Blanc 1, Chancelade 1, Continenza 1, Ein Gev 1, Farincourt 1, Lafaye 1, Laugerie Basse unn., Madeleine 1, Mataha F-81, Neve David 1, Oberkassel 2, Ohalo 2, Peyrat 5, Placard 16, Romanelli 1, Romanelli 4, Romito 1, Romito 3, Romito 4, St-Germain-la-R. 4, San Teodoro 1, Villabruna 1 |
欧亚大陆东部旧石器晚期晚段现代人/ Eastern Eurasia Late Upper Paleolithic | Minatogawa 1, Minatogawa 2, Minatogawa 3, Minatogawa 4, Tam Hang 2, Tam Hang 3, Tam Hang 7, Tam Hang 11, Tam Hang 13, Tam Hang 14 |
非洲北部旧石器晚期晚段现代人/ North Africa Late Upper Paleolithic | Afalou 1, Afalou 2, Afalou 3, Afalou 10, Afalou 11, Afalou 13, Afalou 25, Afalou 27, Afalou 28, Sahaba 10, Sahaba 16, Sahaba 19, Sahaba 20, Sahaba 22, Sahaba 25, Sahaba 28, Sahaba 38, Sahaba 39, Sahaba 40, Sahaba 102, Wadi Halfa 1, Wadi Halfa 3, Wadi Halfa 11, Wadi Halfa 12, Wadi Halfa 14, Wadi Halfa 24, Wadi Halfa 25, Wadi Halfa 26, Wadi Halfa 28, Wadi Halfa 31, Wadi Halfa 32, Wadi Halfa 34, Wadi Halfa 36, Wadi Halfa 37 |
图1 建平人肱骨(PA103)三维虚拟复原 从左到右:前侧、后侧、内侧、外侧/From left to right: anterior view, posterior view, medial view, lateral view
Fig.1 3D visual model of the Jianping right humerus(PA103)
图2 与近现代人肱骨(灰色)对比的建平人肱骨(PA103)(粉色)及其骨干横断面
Fig.2 Jianping right humerus PA103 (pink) superimposed onto one complete humerus from recent modern humans (grey)(Left) and femoral diaphyseal cross-sections of PA103(Right)
肱骨骨 干横断 面位置 | 截面 总面积 St (mm2) | 骨密 质面积 Sc (mm2) | 前后侧截 面惯性矩 Ix (mm4) | 内外侧截 面惯性矩 Iy (mm4) | 最大截面 惯性矩 Imax (mm4) | 最小截面 惯性矩 Imin (mm4) | 前后侧截 面抵抗矩 Zx (mm3) | 内外侧截 面抵抗矩 Zy (mm3) | 极截面 惯性矩 J (mm4) | 极截面 抵抗拒 Zp (mm3) |
---|---|---|---|---|---|---|---|---|---|---|
35% | 268.6 | 210.9 | 5857.1 | 5339.9 | 5858.9 | 5338.1 | 559.4 | 522.3 | 11197.0 | 1059.9 |
50% | 299.5 | 222.9 | 7891.4 | 6029.1 | 8611.7 | 5308.8 | 716.1 | 578.1 | 13920.5 | 1247.4 |
65% | 333.0 | 236.3 | 8869.7 | 7497.0 | 9481.7 | 6885.0 | 799.3 | 695.1 | 16366.7 | 1425.3 |
表2 建平古人类肱骨化石PA103骨干横断面几何特征参数
Tab.2 Cross-sectional geometric parameters of the Jianping humerus PA103
肱骨骨 干横断 面位置 | 截面 总面积 St (mm2) | 骨密 质面积 Sc (mm2) | 前后侧截 面惯性矩 Ix (mm4) | 内外侧截 面惯性矩 Iy (mm4) | 最大截面 惯性矩 Imax (mm4) | 最小截面 惯性矩 Imin (mm4) | 前后侧截 面抵抗矩 Zx (mm3) | 内外侧截 面抵抗矩 Zy (mm3) | 极截面 惯性矩 J (mm4) | 极截面 抵抗拒 Zp (mm3) |
---|---|---|---|---|---|---|---|---|---|---|
35% | 268.6 | 210.9 | 5857.1 | 5339.9 | 5858.9 | 5338.1 | 559.4 | 522.3 | 11197.0 | 1059.9 |
50% | 299.5 | 222.9 | 7891.4 | 6029.1 | 8611.7 | 5308.8 | 716.1 | 578.1 | 13920.5 | 1247.4 |
65% | 333.0 | 236.3 | 8869.7 | 7497.0 | 9481.7 | 6885.0 | 799.3 | 695.1 | 16366.7 | 1425.3 |
标本Specimens | 35%生物力学粗壮度J(标准化) | 50%生物力学粗壮度J(标准化) | |||
---|---|---|---|---|---|
利手侧Handy | 不利手侧Not handy | 利手侧Handy | 不利手侧Not handy | ||
PA103 | 11.3 | 14.0 | |||
Nea | 19.8±0.7(3)b | 10.8±3.2(4) | 24.9±4.0(2) | 14.6±3.7(2) | |
MPMH | 5.3±2.6(2) | 5.6(1) | 7.5(1) | 5.8(1) | |
EUP | 11.6±4.1(10) | 9.8±2.6(12) | 12.7±3.2(11) | 10.2±2.3(11) | |
WEL | 17.0±5.0(19) | 12.3±4.2(16) | 21.0±5.8(14) | 14.2±3.4(14) | |
EEL | 13.4±2.1(9) | 11.5±2.4(7) | 15.9±3.4(6) | 14.2±3.4(6) | |
NAL | 14.4±4.0(22) | 10.7±2.4(23) | 16.0±4.0 (23) | 12.9±3.3 (23) | |
K-Wb P | 0.002 (H=19.082, f (d)=5) | 0.199 (H=7.298, f (d)=5) | 0.001 (H=21.474, f (d)=5) | 0.016(H=13.872, f (d)=5) |
表3 肱骨生物力学粗壮度指数的均值与标准差
Tab.3 Mean and standard deviation indexes(±σ) of humeral biomechanical robusticity
标本Specimens | 35%生物力学粗壮度J(标准化) | 50%生物力学粗壮度J(标准化) | |||
---|---|---|---|---|---|
利手侧Handy | 不利手侧Not handy | 利手侧Handy | 不利手侧Not handy | ||
PA103 | 11.3 | 14.0 | |||
Nea | 19.8±0.7(3)b | 10.8±3.2(4) | 24.9±4.0(2) | 14.6±3.7(2) | |
MPMH | 5.3±2.6(2) | 5.6(1) | 7.5(1) | 5.8(1) | |
EUP | 11.6±4.1(10) | 9.8±2.6(12) | 12.7±3.2(11) | 10.2±2.3(11) | |
WEL | 17.0±5.0(19) | 12.3±4.2(16) | 21.0±5.8(14) | 14.2±3.4(14) | |
EEL | 13.4±2.1(9) | 11.5±2.4(7) | 15.9±3.4(6) | 14.2±3.4(6) | |
NAL | 14.4±4.0(22) | 10.7±2.4(23) | 16.0±4.0 (23) | 12.9±3.3 (23) | |
K-Wb P | 0.002 (H=19.082, f (d)=5) | 0.199 (H=7.298, f (d)=5) | 0.001 (H=21.474, f (d)=5) | 0.016(H=13.872, f (d)=5) |
35%利手侧 | |||||
---|---|---|---|---|---|
scaled J | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.026 | 0.057 | 1.000 | 0.279 | 0.519 |
MPMH | 1.000 | 0.082 | 1.000 | 0.528 | |
EUP | 0.066 | 1.000 | 1.000 | ||
WEL | 0.816 | 1.000 | |||
EEL | 1.000 | ||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 0.761 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 1.000 | 1.000 | 0.020 | ||
WEL | 1.000 | 0.333 | |||
EEL | 0.005 | ||||
35%不利手侧 | |||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 1.000 | 1.000 | 0.256 | |
EUP | 1.000 | 1.000 | 0.002 | ||
WEL | 1.000 | 1.000 | |||
EEL | 0.029 | ||||
50%利手侧 | |||||
scaled J | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.169 | 0.063 | 1.000 | 0.849 | 0.624 |
MPMH | 1.000 | 0.289 | 1.000 | 1.000 | |
EUP | 0.002 | 1.000 | 0.860 | ||
WEL | 1.000 | 0.229 | |||
EEL | 1.000 | ||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 0.748 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 1.000 | 1.000 | <0.001 | ||
WEL | 1.000 | 0.379 | |||
EEL | 0.028 | ||||
Lmax/Lmin | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 0.003 |
MPMH | 1.000 | 1.000 | 1.000 | 0.505 | |
EUP | 1.000 | 1.000 | 0.004 | ||
WEL | 1.000 | <0.001 | |||
EEL | <0.001 | ||||
50%利手侧 | |||||
Imax/Imin | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.932 | 0.015 | 1.000 | 1.000 | 0.025 |
MPMH | 1.000 | 1.000 | 0.905 | 1.000 | |
EUP | 0.400 | 0.005 | 1.000 | ||
WEL | 1.000 | 0.717 | |||
EEL | 0.007 | ||||
50%不利手侧 | |||||
scaled J | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 0.676 | 0.945 | 1.000 | |
EUP | 0.031 | 0.308 | 0.365 | ||
WEL | 1.000 | 1.000 | |||
EEL | 1.000 | ||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 0.305 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 1.000 | 1.000 | <0.001 | ||
WEL | 1.000 | 0.073 | |||
EEL | 0.456 | ||||
Lmax/Lmin | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 0.192 | 1.000 | 1.000 | <0.001 |
MPMH | 1.000 | 1.000 | 1.000 | 0.843 | |
EUP | 0.793 | 0.152 | 0.009 | ||
WEL | 1.000 | <0.001 | |||
EEL | <0.001 | ||||
Imax/Imin | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.276 | 0.010 | 0.698 | 1.000 | 0.001 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 0.769 | 0.157 | 1.000 | ||
WEL | 1.000 | 0.070 | |||
EEL | 0.016 |
表6 所有指数的组间两两比较
Tab.6 Results of post hoc comparisons of humeral CSG properties and linear shape index
35%利手侧 | |||||
---|---|---|---|---|---|
scaled J | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.026 | 0.057 | 1.000 | 0.279 | 0.519 |
MPMH | 1.000 | 0.082 | 1.000 | 0.528 | |
EUP | 0.066 | 1.000 | 1.000 | ||
WEL | 0.816 | 1.000 | |||
EEL | 1.000 | ||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 0.761 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 1.000 | 1.000 | 0.020 | ||
WEL | 1.000 | 0.333 | |||
EEL | 0.005 | ||||
35%不利手侧 | |||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 1.000 | 1.000 | 0.256 | |
EUP | 1.000 | 1.000 | 0.002 | ||
WEL | 1.000 | 1.000 | |||
EEL | 0.029 | ||||
50%利手侧 | |||||
scaled J | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.169 | 0.063 | 1.000 | 0.849 | 0.624 |
MPMH | 1.000 | 0.289 | 1.000 | 1.000 | |
EUP | 0.002 | 1.000 | 0.860 | ||
WEL | 1.000 | 0.229 | |||
EEL | 1.000 | ||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 0.748 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 1.000 | 1.000 | <0.001 | ||
WEL | 1.000 | 0.379 | |||
EEL | 0.028 | ||||
Lmax/Lmin | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 0.003 |
MPMH | 1.000 | 1.000 | 1.000 | 0.505 | |
EUP | 1.000 | 1.000 | 0.004 | ||
WEL | 1.000 | <0.001 | |||
EEL | <0.001 | ||||
50%利手侧 | |||||
Imax/Imin | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.932 | 0.015 | 1.000 | 1.000 | 0.025 |
MPMH | 1.000 | 1.000 | 0.905 | 1.000 | |
EUP | 0.400 | 0.005 | 1.000 | ||
WEL | 1.000 | 0.717 | |||
EEL | 0.007 | ||||
50%不利手侧 | |||||
scaled J | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 0.676 | 0.945 | 1.000 | |
EUP | 0.031 | 0.308 | 0.365 | ||
WEL | 1.000 | 1.000 | |||
EEL | 1.000 | ||||
Rct | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 0.305 | 1.000 | 1.000 | 1.000 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 1.000 | 1.000 | <0.001 | ||
WEL | 1.000 | 0.073 | |||
EEL | 0.456 | ||||
Lmax/Lmin | MPMH | EUP | WEL | EEL | NAL |
Nea | 1.000 | 0.192 | 1.000 | 1.000 | <0.001 |
MPMH | 1.000 | 1.000 | 1.000 | 0.843 | |
EUP | 0.793 | 0.152 | 0.009 | ||
WEL | 1.000 | <0.001 | |||
EEL | <0.001 | ||||
Imax/Imin | MPMH | EUP | WEL | EEL | NAL |
Nea | 0.276 | 0.010 | 0.698 | 1.000 | 0.001 |
MPMH | 1.000 | 1.000 | 1.000 | 1.000 | |
EUP | 0.769 | 0.157 | 1.000 | ||
WEL | 1.000 | 0.070 | |||
EEL | 0.016 |
标本Specimens | 中远端骨密质面积百分比Rct of 35% position | 中部骨密质面积百分比Rct of 50% position | |||
---|---|---|---|---|---|
利手侧Handy | 不利手侧Not handy | 利手侧Handy | 不利手侧Not handy | ||
PA103 | 78.5% | 74.4% | |||
Nea | (78.5±5.0)% (5) b | (80.7±5.1)% (5) | (978.2±6.1)% (5) | (79.2±5.2)% (5) | |
MPMH | (77.6±7.4)% (3) | (74.7±3.7)% (3) | 73.5% (1) | (76.9±21.6)% (2) | |
EUP | (77.6±7.0)% (16) | (76.1±7.3)% (16) | (68.8±8.1)% (12) | (66.5±9.6)% (12) | |
WEL | (79.5±8.1)% (14) | (79.9±6.9)%(14) | (75.2±7.4)% (9) | (72.9±6.6)% (9) | |
EEL | (74.8±6.7)% (10) | (76.5±4.9)% (10) | (73.5±6.0)% (10) | (75.4±6.7)% (10) | |
NAL | (85.2±7.7)% (32) | (84.4±6.7)% (31) | (81.6±5.8)% (37) | 981.8±7.3)% (37) | |
K-Wb P | <0.001 (H=21.561, f (d)=6) | <0.001 (H=23.654, f (d)=6) | <0.001 (H=27.917, f (d)=6) | <0.001 (H=25.679, f (d) =6) |
表4 肱骨中远端(35%部位)和中部(50%部位)骨密质面积百分比 (Rct) 比较
Tab.4 Percent cortical area (Rct) comparisons of PA103’s right humeral mid-distal (35% position) and midshaft (50% position)diaphysis
标本Specimens | 中远端骨密质面积百分比Rct of 35% position | 中部骨密质面积百分比Rct of 50% position | |||
---|---|---|---|---|---|
利手侧Handy | 不利手侧Not handy | 利手侧Handy | 不利手侧Not handy | ||
PA103 | 78.5% | 74.4% | |||
Nea | (78.5±5.0)% (5) b | (80.7±5.1)% (5) | (978.2±6.1)% (5) | (79.2±5.2)% (5) | |
MPMH | (77.6±7.4)% (3) | (74.7±3.7)% (3) | 73.5% (1) | (76.9±21.6)% (2) | |
EUP | (77.6±7.0)% (16) | (76.1±7.3)% (16) | (68.8±8.1)% (12) | (66.5±9.6)% (12) | |
WEL | (79.5±8.1)% (14) | (79.9±6.9)%(14) | (75.2±7.4)% (9) | (72.9±6.6)% (9) | |
EEL | (74.8±6.7)% (10) | (76.5±4.9)% (10) | (73.5±6.0)% (10) | (75.4±6.7)% (10) | |
NAL | (85.2±7.7)% (32) | (84.4±6.7)% (31) | (81.6±5.8)% (37) | 981.8±7.3)% (37) | |
K-Wb P | <0.001 (H=21.561, f (d)=6) | <0.001 (H=23.654, f (d)=6) | <0.001 (H=27.917, f (d)=6) | <0.001 (H=25.679, f (d) =6) |
标本Specimens | 中部最大径与最小径之比Lmax/Lmin | 中部最大与最小截面惯性矩之比Imax/Imin | |||
---|---|---|---|---|---|
利手侧Handy | 不利手侧Not handy | 利手侧Handy | 不利手侧Not handy | ||
PA103 | 135.7 | 1.6 | |||
Nea | 131.7±15.6 (7) | 137.8±6.4(7) | 1.9±0.2(7) | 1.9±0.2(7) | |
MPMH | 127.1±18.2 (3) | 122.7±5.2 (3) | 1.6±0.3 (3) | 1.47±0.1 (3) | |
EUP | 123.7±8.0 (16) | 120.4±10.4 (16) | 1.5±0.2 (18) | 1.5±0.2(18) | |
WEL | 130.4±10.2 (19) | 131.0±11.1(19) | 1.7±0.2(20) | 1.6±0.2(19) | |
EEL | 136.3±21.9 (10) | 136.5±5.5 (10) | 1.9±0.3(10) | 1.7±0.2 (10) | |
NAL | 107.8±5.9 (37) | 106.3±4.2 (37) | 1.5±0.3 (37) | 1.4±0.3 (37) | |
K-W P | <0.001 (H=50.908, f(d)=6) | <0.001 (H=67.137, f(d)=6) | <0.001 (H=24.623, f(d)=6) | <0.001 (H=29.136, f(d)=6) |
表5 肱骨骨干中部形状指数对比
Tab.5 Comparisons for humeral midshaft shape
标本Specimens | 中部最大径与最小径之比Lmax/Lmin | 中部最大与最小截面惯性矩之比Imax/Imin | |||
---|---|---|---|---|---|
利手侧Handy | 不利手侧Not handy | 利手侧Handy | 不利手侧Not handy | ||
PA103 | 135.7 | 1.6 | |||
Nea | 131.7±15.6 (7) | 137.8±6.4(7) | 1.9±0.2(7) | 1.9±0.2(7) | |
MPMH | 127.1±18.2 (3) | 122.7±5.2 (3) | 1.6±0.3 (3) | 1.47±0.1 (3) | |
EUP | 123.7±8.0 (16) | 120.4±10.4 (16) | 1.5±0.2 (18) | 1.5±0.2(18) | |
WEL | 130.4±10.2 (19) | 131.0±11.1(19) | 1.7±0.2(20) | 1.6±0.2(19) | |
EEL | 136.3±21.9 (10) | 136.5±5.5 (10) | 1.9±0.3(10) | 1.7±0.2 (10) | |
NAL | 107.8±5.9 (37) | 106.3±4.2 (37) | 1.5±0.3 (37) | 1.4±0.3 (37) | |
K-W P | <0.001 (H=50.908, f(d)=6) | <0.001 (H=67.137, f(d)=6) | <0.001 (H=24.623, f(d)=6) | <0.001 (H=29.136, f(d)=6) |
图3 肱骨骨干标准化后的骨密质厚度形态示量图 A:右侧肱骨 Right humeri;B:左侧肱骨Left humeri。从深蓝色到红色厚度逐渐加深In all measurements, warmer colors denote higher values, and cold colors denote lower values。 Datong_R:大同南郊北魏人群右侧肱骨;Junzicun_R:君子村清代人群右侧肱骨;PA103:建平右侧肱骨;Junzicun_L:君子村清代人群左侧肱骨 (R: right, L: left)
Fig.3 Morphometric maps of scales cortical bone thickness (sCBT) distribution
[1] | 刘武, 吴秀杰, 邢松, 等. 中国古人类化石[M]. 北京: 科学出版社, 2014, 264-265 |
[2] | 周明镇, 薛祥煦. 辽宁建平及康平几种更新世晚期哺乳动物化石[J]. 古生物学报, 1958, 6:51-58 |
[3] | 吴汝康. 辽宁建平人类上臂骨化石[J]. 古脊椎动物与古人类, 1960, 2:287-298 |
[4] |
Sparacello VS, Villotte S, Shackelford LL, et al. Patterns of humeral asymmetry among Late Pleistocene humans[J]. Comptes Rendus Palevol, 2017, 16:680-689
doi: 10.1016/j.crpv.2016.09.001 URL |
[5] | 张国文, 胡耀武, 裴德明, 等. 大同南郊北魏墓葬群人骨的稳定同位素分析[J]. 南方文物, 2010, 1:127-131 |
[6] |
Steele DG, MeKern TW. A method for assessment of maximum long bone length and living stature from fragmentary long bones[J]. American Journal of Physical Anthropology, 1969, 31(2):215-227
pmid: 5348797 |
[7] |
Trinkaus E. The palaeopathology of the Ohalo 2 Upper Paleolithic human remains: A reassessment of its appendicular robusticity, humeral asymmetry, shoulder degenerations, and costal lesion[J]. International Journal of Osteoarchaeology, 2018, 28:143-152
doi: 10.1002/oa.v28.2 URL |
[8] |
Ruff CB. Long bone articular and diaphyseal structural in old world monkeys and apes. I: Locomotor effect[J]. American Journal of Physical Anthropology, 2002, 119:305-342
doi: 10.1002/(ISSN)1096-8644 URL |
[9] |
Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae - A biomechanical investigation: I. Method and general patterns of variation[J]. American Journal of Physical Anthropology, 1983, 60:359-381
pmid: 6846510 |
[10] |
Ruff CB, Trinkaus E, Walker A, et al. Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation[J]. American Journal of Physical Anthropology, 1993, 91:21-53
pmid: 8512053 |
[11] | Ruff CB. Biomechanical analyses of archaeological human skeletons[A]. In: Katzenberg MA, Saunders SR(Eds.). Biological Anthropology of the Human Skeleton (2nd edition)[M]. New Jersey: John Wiley & Sons, Inc. 2008, 183-206 |
[12] | Churchill SE. Human upper body evolution in the Eurasian Later Pleistocene[D]. Albuquerque: University of New Mexico, 1994: 111-123 |
[13] |
Bondioli L, Bayle P, Dean C, et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[J]. American Journal of Physical Anthropology, 2010, 142:328-334
doi: 10.1002/ajpa.21271 pmid: 20229503 |
[14] |
Morimoto N, Ponce de Leon MS, Zollikofer CP. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff’s law[J]. The Anatomical Record, 2011, 294:589-609
doi: 10.1002/ar.21346 pmid: 21328564 |
[15] |
Wei P, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quaternary International, 2017, 434:48-56
doi: 10.1016/j.quaint.2015.10.099 URL |
[16] | Jashashvili T, Dowdeswell MR, Lebrun R, et al. Cortical structure of hallucal metatarsals and locomotor adaptations in hominoids[J]. PLOS ONE, 2015, 10:e0117905 |
[17] | 吴汝康, 吴新智, 张振标. 人体测量方法[M]. 北京: 科学出版社, 1984, 61-64 |
[18] | Bräuer G. Anthropologie[A]. In: Knussman R(Eds.). Anthropologie[M]. Stuttgart: Fischer Verlag, 1988: 160-232 |
[19] | Rhodes JA, Knüsel CJ. Activity-related skeletal change in medieval humeri: Cross-sectional and architectural alterations[J]. American Journal of Physical Anthropology 128, 2005, 536-546 |
[20] |
Main RP. Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius[J]. Journal of Anatomy, 2007, 210:272-293
doi: 10.1111/joa.2007.210.issue-3 URL |
[21] |
Haapasalo H, Kontulainem S, Sievänen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: A peripheral quantitative computed tomography study of the upper arms of male tennis players[J]. Bone, 2000, 27:351-357
pmid: 10962345 |
[22] |
Warden SJ, Mantila SM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men[J]. Proceedings of the National Academy of Sciences, 2014, 111:5337-5342
doi: 10.1073/pnas.1321605111 URL |
[1] | 刘武, 何嘉宁, 严毅, 张梓梁, 陈逸迎, 吴秀杰. 现代人群颅骨梨状孔区域的形态变异[J]. 人类学学报, 2023, 42(04): 445-457. |
[2] | 孙蕾, 李彦桢, 武志江. 河南郑州站马屯遗址仰韶晚期人骨的颅面形态[J]. 人类学学报, 2023, 42(03): 331-341. |
[3] | 李海军, 翁敏洁, 段琬琪, 刘力铭. 人类口唇部形态变异的研究进展[J]. 人类学学报, 2023, 42(01): 137-148. |
[4] | 严毅, 赵昱浩, 吴秀杰. 近代人群头骨颞线的分型和变异[J]. 人类学学报, 2022, 41(05): 775-787. |
[5] | 胡晓纯, 高星. 贵州马鞍山遗址1986年出土石制品初步研究[J]. 人类学学报, 2022, 41(05): 788-803. |
[6] | 赵东月, 吕正, 邢福来, 苗轶飞, 陈靓. 统万城遗址出土人骨颅面测量性状[J]. 人类学学报, 2022, 41(05): 816-825. |
[7] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石的形态多样性及其演化意义[J]. 人类学学报, 2022, 41(04): 563-575. |
[8] | 张颖奇, Terry HARRISON. 化石人猿超科成员指趾骨弯曲程度与位移行为[J]. 人类学学报, 2022, 41(04): 659-673. |
[9] | 杜雨薇, 丁馨, 裴树文. 浅议古人类活动遗址的动物埋藏学研究方法[J]. 人类学学报, 2022, 41(03): 523-534. |
[10] | 魏偏偏, 张全超. 内蒙古和林格尔土城子农业人群与林西井沟子游牧人群股骨中部的生物力学对比[J]. 人类学学报, 2022, 41(02): 238-247. |
[11] | 雷蕾, 贺乐天, 李大伟, 李浩. 三维几何形态测量方法在石制品分析中的应用[J]. 人类学学报, 2021, 40(06): 970-980. |
[12] | 德力格尔, 乌云格日勒. 内蒙古汉族、蒙古族与日本学生身高和体质量的最大发育年龄段差异[J]. 人类学学报, 2021, 40(05): 847-856. |
[13] | 何嘉宁. 中国古代人骨体质人类学的研究进展与展望[J]. 人类学学报, 2021, 40(02): 165-180. |
[14] | 马东东, 牛东伟, 裴树文, 李潇丽, 杨海勇, 王法岗. 蔚县盆地2017-2018年旧石器考古调查简报[J]. 人类学学报, 2021, 40(01): 128-136. |
[15] | 魏偏偏. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2020, 39(04): 616-631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||