人类学学报 ›› 2021, Vol. 40 ›› Issue (03): 363-377.doi: 10.16359/j.1000-3193/AAS.2021.0047
李浩1,2(), 张玉柱3, 李意愿4, 李占扬5, 贾雅娜3
收稿日期:
2020-11-24
修回日期:
2021-03-10
出版日期:
2021-06-15
发布日期:
2021-06-24
作者简介:
李浩(1985-),男,河南长葛人,中国科学院古脊椎动物与古人类研究所副研究员,主要从事旧石器考古研究。E-mail: 基金资助:
LI Hao1,2(), ZHANG Yuzhu3, LI Yiyuan4, LI Zhanyang5, JIA Yana3
Received:
2020-11-24
Revised:
2021-03-10
Online:
2021-06-15
Published:
2021-06-24
摘要:
考古遗址在自然因素下所经历的沉积、改造和再堆积过程,对于理解遗址完整历史至关重要,但迄今相关研究在中国旧石器遗址中开展得较为有限。本文在介绍遗址堆积与改造过程相关背景知识的基础上,对自然因素研究中涉及到的最为关键和核心的对象之一——沉积物及其常用分析指标(粒度、磁化率、地球化学元素、矿物组成和土壤微形态)进行阐述,并以许昌人遗址和伞顶盖遗址为例说明相关指标的应用情况。沉积物分析指标侧重从微观角度揭示旧石器遗址的堆积与改造过程,因此,我们还需结合宏观尺度下的遗址沉积地层、地貌发育和环境演变等特征,以及考古标本本身的一系列信息对遗址在自然因素影响下的形成过程进行综合分析和判断。
中图分类号:
李浩, 张玉柱, 李意愿, 李占扬, 贾雅娜. 沉积物特征与旧石器遗址的形成过程[J]. 人类学学报, 2021, 40(03): 363-377.
LI Hao, ZHANG Yuzhu, LI Yiyuan, LI Zhanyang, JIA Yana. Sediment characteristics and the formation processes of Paleolithic sites[J]. Acta Anthropologica Sinica, 2021, 40(03): 363-377.
图1 许昌人遗址(a, b, c)和伞顶盖遗址(d, e, f)地层划分及部分层位标本出土场景
Fig.1 Stratigraphic divisions and excavation plans of the Xuchang hominid site in Henan Province (a, b, c) and the Sandinggai site in Hunan Province (d, e, f)
遗址/ Site | 地层编号/ Layer number | 深度/ Depth (cm) | 平均粒径/ Mean grain size (μm) | 黏土/ Clay (%) | 细粉砂/ Fine silt (%) | 粗粉砂/ Coarse silt (%) | 砂/ Sand (%) | 磁化率/ Magnetic susceptibility (10-8 m3/kg) |
---|---|---|---|---|---|---|---|---|
许昌人遗址 | 第1层 | 0-25 | 34.44 | 15.25% | 23.97% | 43.72% | 17.06% | 10.51 |
第2层 | 25-55 | 34.51 | 15.97% | 24.20% | 42.40% | 17.43% | 22.03 | |
第3层 | 55-105 | 33.35 | 14.29% | 25.61% | 44.33% | 15.78% | 7.92 | |
伞顶盖遗址 | 第2层 | 30-70 | 13.31 | 47.61% | 48.37% | 3.71% | 0.31% | 189.36 |
第3层 | 70-110 | 16.56 | 38.97% | 49.35% | 11.39% | 0.28% | 32.61 | |
第4层 | 110-230 | 12.21 | 48.99% | 44.10% | 6.82% | 0.09% | 56.94 |
表1 许昌人遗址与伞顶盖遗址沉积物粒度和磁化率
Tab.1 Grain size and magnetic susceptibility of sediments collected from the Xuchang hominid site and the Sandinggai site respectively
遗址/ Site | 地层编号/ Layer number | 深度/ Depth (cm) | 平均粒径/ Mean grain size (μm) | 黏土/ Clay (%) | 细粉砂/ Fine silt (%) | 粗粉砂/ Coarse silt (%) | 砂/ Sand (%) | 磁化率/ Magnetic susceptibility (10-8 m3/kg) |
---|---|---|---|---|---|---|---|---|
许昌人遗址 | 第1层 | 0-25 | 34.44 | 15.25% | 23.97% | 43.72% | 17.06% | 10.51 |
第2层 | 25-55 | 34.51 | 15.97% | 24.20% | 42.40% | 17.43% | 22.03 | |
第3层 | 55-105 | 33.35 | 14.29% | 25.61% | 44.33% | 15.78% | 7.92 | |
伞顶盖遗址 | 第2层 | 30-70 | 13.31 | 47.61% | 48.37% | 3.71% | 0.31% | 189.36 |
第3层 | 70-110 | 16.56 | 38.97% | 49.35% | 11.39% | 0.28% | 32.61 | |
第4层 | 110-230 | 12.21 | 48.99% | 44.10% | 6.82% | 0.09% | 56.94 |
地层编号/ Layer number | 深度/ Depth | 伊利石/ Illite | 石英/ Quartz | 白云母/ Muscovite | 黑云母/ Biotite | 辉石/ Augite | 钙长石/ Anorthite | 钠长石/ Albite | 正长石/ Orthoclase |
---|---|---|---|---|---|---|---|---|---|
第1层 | 0-25 cm | 30.5% | 22.3% | 20.0% | 6.1% | 3.4% | 8.0% | 6.7% | 2.7% |
第2层 | 25-55 cm | 32.6% | 23.0% | 16.6% | 5.4% | 3.8% | 7.0% | 6.8% | 2.9% |
第3层 | 55-105 cm | 28.1% | 20.9% | 17.6% | 4.9% | 2.9% | 6.4% | 6.4% | 2.5% |
表2 许昌人遗址沉积物矿物成分百分比(%)
Tab.2 Mineral components (%) of sediments collected from the Xuchang hominid site
地层编号/ Layer number | 深度/ Depth | 伊利石/ Illite | 石英/ Quartz | 白云母/ Muscovite | 黑云母/ Biotite | 辉石/ Augite | 钙长石/ Anorthite | 钠长石/ Albite | 正长石/ Orthoclase |
---|---|---|---|---|---|---|---|---|---|
第1层 | 0-25 cm | 30.5% | 22.3% | 20.0% | 6.1% | 3.4% | 8.0% | 6.7% | 2.7% |
第2层 | 25-55 cm | 32.6% | 23.0% | 16.6% | 5.4% | 3.8% | 7.0% | 6.8% | 2.9% |
第3层 | 55-105 cm | 28.1% | 20.9% | 17.6% | 4.9% | 2.9% | 6.4% | 6.4% | 2.5% |
遗址/ Site | 地层编号/ Layer number | 深度/ Depth (cm) | SiO2 | Al2O3 | Fe2O3 | K2O | Na2O | CaO | MgO | MnO | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
许昌人 遗址 | 第1层 | 0-25 | 72.84% | 11.37% | 3.23% | 2.49% | 1.58% | 1.15% | 1.19% | 0.07% | 0.63% |
第2层 | 25-55 | 72.97% | 11.63% | 3.36% | 2.56% | 1.55% | 0.97% | 1.11% | 0.05% | 0.65% | |
第3层 | 55-105 | 73.35% | 11.26% | 3.06% | 2.57% | 1.64% | 1.01% | 1.18% | 0.05% | 0.63% | |
伞顶盖 遗址 | 第2层 | 30-70 | 52.81% | 22.18% | 8.30% | 1.76% | 0.12% | 0.29% | 0.79% | 0.01% | 0.01% |
第3层 | 70-110 | 52.00% | 24.01% | 7.99% | 1.90% | 0.11% | 0.09% | 0.61% | 0.01% | 0.01% | |
第4层 | 110-230 | 52.53% | 23.04% | 8.16% | 1.71% | 0.11% | 0.16% | 0.66% | 0.01% | 0.01% |
表3 许昌人遗址和伞顶盖遗址常量地球化学元素百分比(%)
Tab.3 Geochemical element compositions (%) of sediments collected from the Xuchang hominid site and the Sandinggai site respectively
遗址/ Site | 地层编号/ Layer number | 深度/ Depth (cm) | SiO2 | Al2O3 | Fe2O3 | K2O | Na2O | CaO | MgO | MnO | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
许昌人 遗址 | 第1层 | 0-25 | 72.84% | 11.37% | 3.23% | 2.49% | 1.58% | 1.15% | 1.19% | 0.07% | 0.63% |
第2层 | 25-55 | 72.97% | 11.63% | 3.36% | 2.56% | 1.55% | 0.97% | 1.11% | 0.05% | 0.65% | |
第3层 | 55-105 | 73.35% | 11.26% | 3.06% | 2.57% | 1.64% | 1.01% | 1.18% | 0.05% | 0.63% | |
伞顶盖 遗址 | 第2层 | 30-70 | 52.81% | 22.18% | 8.30% | 1.76% | 0.12% | 0.29% | 0.79% | 0.01% | 0.01% |
第3层 | 70-110 | 52.00% | 24.01% | 7.99% | 1.90% | 0.11% | 0.09% | 0.61% | 0.01% | 0.01% | |
第4层 | 110-230 | 52.53% | 23.04% | 8.16% | 1.71% | 0.11% | 0.16% | 0.66% | 0.01% | 0.01% |
图2 许昌人遗址与伞顶盖遗址不同层位化学蚀变指数(Ica)分布图
Fig.2 Distribution map of Chemical Index of Alteration (Ica) values at the different layers of the Xuchang hominid site and the Sandinggai site
图3 伞顶盖遗址不同地层单元的沉积物微形态照片 注:a(正交偏光)和b(同一区域单偏光)指示第2层黄红色土层,采样深度47-52 cm;c(正交偏光)和d(同一区域单偏光)指示第3层均质红土层,采样深度87-92 cm;e(单偏光)和f(单偏光)指示第4层网纹红土层,采样深度110-115 cm。a (cross-polarized light, XPL) and b (plane-polarized light, PPL) indicate the yellow-red clay of Layer two, sampling depth 47-52 cm; c (XPL) and d (PPL) indicate the homogeneous red soil of Layer three, sampling depth 87-92 cm; while e (XPL) and f (PPL) indicate the vermiculated red soil of Layer four, sampling depth 110-115 cm
Fig.3 Micromorphological photos of the different stratigraphic units at the Sandinggai site
[1] |
Shiffer MB. Toward the identification of formation process[J]. American Antiquity, 1983,48:675-706
doi: 10.2307/279771 URL |
[2] | Shiffer MB. Formation processes of the archaeological record[M]. Albuquerque: University of New Mexico Press, 1987 |
[3] |
Hassan FA. Geoarchaeology: the geologist and archaeology[J]. American Antiquity, 1979,44(2):267-270
doi: 10.2307/279076 URL |
[4] | Herz N, Garrison EG. Geological methods for archaeology[M]. New York: Oxford University Press, 1998 |
[5] | Rapp G, Hill CL. Geoarchaeology: the Earth Science approach to archaeological interpretation, second edition [M]. New Haven: Yale University Press, 2006 |
[6] | Goldberg P, Macphail RI. Practical and theoretical geoarchaeology[M]. Malden: Blackwell Publishing, 2006 |
[7] | George R, Christopher LH. 地质考古学:地球科学方法在考古学中的应用[M]. 译者:杨石霞,赵克良,李小强. 北京: 科学出版社, 2020 |
[8] | Renfrew C, Bahn P. Archaeology: theories, methods and practice, eighth edition[M]. London: Thames & Hudson, 2020 |
[9] | Garrison E. Techniques in archaeological geology, second edition[M]. New York:Springer, 2016 |
[10] | Isaac GL. Towards the interpretation of occupation debris: some experiments and observations[J]. Kroeber Anthropology Society Papers, 1967,37:31-57 |
[11] | Isaac GL. Bones in contention: Competing explanations for the juxtaposition of Early Pleistocene artifacts and faunal remains[A]. In: Clutton-Brock JH, Grigson C (Eds.). Animals and Archaeology[M], BAR International Series 202. Oxford: Archaeopress, 1983, 3-19 |
[12] | Isaac GL. Archaeological tests of alternative models of early hominid behavior: Excavation and experiments[J]. Philosophical Transactions of the Royal Society B, 1981,292(1057):177-188 |
[13] | Schick KD. 1986. Stone Age Sites in the Making: Experiments in the formation and transformation of archaeological occurrences[M]. Oxford: BAR International Series 319, 1986 |
[14] |
Schick KD. Modeling the formation of early stone artifact concentration[J]. Journal of Human Evolution, 1987,16:789-807
doi: 10.1016/0047-2484(87)90024-8 URL |
[15] |
Schiffer MB. Archaeology as behavioral science[J]. American Anthropologist, 1975,77:836-848
doi: 10.1525/aa.1975.77.issue-4 URL |
[16] |
Cahen D, Moeyersons J. Subsurface movements of stone artefacts and their implications for the prehistory of Central Africa[J]. Nature, 1977,266:812-815
doi: 10.1038/266812a0 URL |
[17] |
Stein JK. Earthworm activity: A source of potential disturbance of archaeological sediments[J]. American Antiquity, 1983,48:277-289
doi: 10.2307/280451 URL |
[18] |
Hofman JL. Vertical movement of artifacts in alluvial and stratified deposits[J]. Current Anthropology, 1986,27:163-171
doi: 10.1086/203414 URL |
[19] |
McBrearty S. Consider the humble termite: Termites as agents of post-depositional disturbance at African archaeological sites[J]. Journal of Archaeological Science, 1990,17:111-143
doi: 10.1016/0305-4403(90)90054-9 URL |
[20] |
Eren MI, Durant A, Neudorf C, et al. Experimental examination of animal trampling effects on artifact movement in dry and water saturated substrates: a test case from South India[J]. Journal of Archaeological Science, 2010,37:3010-3021
doi: 10.1016/j.jas.2010.06.024 URL |
[21] |
McBrearty S, Bishop L, Plummer T, et al. Tools underfoot: Human trampling as an agent of lithic artifact edge modification[J]. American Antiquity, 1998,63:108-129
doi: 10.2307/2694779 URL |
[22] | 裴树文. 旧石器时代旷野遗址形成过程研究综述[J]. 人类学学报, 2019,38(1):1-18 |
[23] | Stein JK. Interpreting sediments in cultural settings[A]. In: Stein JK, Farrand WR (Eds.). Archaeological sediments in context[C]. Orono: Center for the Study of Man, 1988, 5-19 |
[24] | Mandel R, Bettis EA. Use and analysis of soils by archaeologists and geoscientists: a North American perspective[A]. In: Goldberg P, Holliday VT, Ferring CR (Eds.). Earth Sciences and Archaeology[C]. New York: Plenum Publishers, 2001, 173-204 |
[25] | 朱鹤健, 陈健飞, 陈松林. 土壤地理学(第三版)[M]. 北京: 高等教育出版社, 2019 |
[26] | Jenny H. Factors of soil formation[M]. New York: McGraw-Hill, 1941 Dover Publications, 1994 |
[27] | Mullins CE. The magnetic properties of the soil and their application to archaeological prospecting[J]. Archaeo-Physica, 1974,5:144-148 |
[28] |
王建, 刘泽纯, 姜文英, 等. 磁化率与粒度、矿物的关系及其古环境意义[J]. 地理学报, 1996,51(2):155-163
doi: 10.11821/xb199602009 |
[29] |
Linderholm J. Soil chemical surveying: A path to a deeper understanding of prehistoric sites and societies in Sweden[J]. Geoarchaeology, 2007,22(4):417-438
doi: 10.1002/(ISSN)1520-6548 URL |
[30] |
Liu QS, Deng CL, Torrent J, et al. Review of recent developments of mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007,26(3-4):368-385
doi: 10.1016/j.quascirev.2006.08.004 URL |
[31] | 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007,27(2):193-209 |
[32] | 杨浩, 夏应菲, 赵其国, 等. 红土系列剖面的磁化率特征与古气候冷暖变换[J]. 土壤学报, 1995,32(2):195-200 |
[33] | 胡雪峰, 程天凡, 巫和昕. 南方网纹红土内是否可能存在多个“沉积-成土”过程的旋回?[J]. 科学通报, 2003,48(9):969-975 |
[34] | 卢升高. 中国南方红土环境磁学[J]. 第四纪研究, 2007,27(6):1016-1022 |
[35] | 吕厚远, 韩家懋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学(B辑), 1994,24(12):1290-1297 |
[36] | 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009,52(4):1041-1048 |
[37] |
Nesbitt HW, Young GM. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982,299:715-717
doi: 10.1038/299715a0 URL |
[38] | 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003,10(4):539-544 |
[39] | Cornwall IW. Soils for the archaeologist[M]. New York: The Macmillan Company, 1958 |
[40] |
Goldberg P. Micromorphology of sediments from Hayonim Cave, Israel[J]. Catena, 1979,6(2):167-181
doi: 10.1016/0341-8162(79)90006-7 URL |
[41] |
Goldberg P. Micromorphology in archaeology and prehistory[J]. Paléorient, 1980,6:159-164
doi: 10.3406/paleo.1980.4265 URL |
[42] | Courty M, Fédoroff N. Micromorphology of a Holocene dwelling[J]. Pact, 1982,7(2):257-277 |
[43] |
Goldberg P, Aldeias V. Why does (archaeological) micromorphology have such little traction in (geo)archaeology?[J]. Archaeological and Anthropological Sciences, 2018,10:269-278
doi: 10.1007/s12520-016-0353-9 URL |
[44] | Bullock P, Fedoroff N, Jongerius A, et al. Handbook for soil thin section description[M]. Wolverhampton: Waine Research Publications, 1985 |
[45] | Stoops G. Guidelines for analysis and description of soil and regolith thin sections[M]. Madison: Soil Science Society of America, 2003 |
[46] | Macphail RI, Goldberg P. Applied soils and micromorphology in archaeology[M]. Cambridge: Cambridge University Press, 2018 |
[47] | 靳桂云, 郭正堂. 北京王府井东方广场旧石器文化遗址——沉积物的土壤微形态学研究[J]. 东方考古(第8集), 2011, 349-352 |
[48] |
Li XL, Pei SW, Jia ZX, et al. Paleoenvironmental conditions at Madigou (MDG), a newly discovered Early Paleolithic site in the Nihewan Basin, North China[J]. Quaternary International, 2016,400:100-110
doi: 10.1016/j.quaint.2015.07.071 URL |
[49] |
Song YH, Cohen DJ, Shi JM, et al. Environmental reconstruction and dating of Shizitan 29, Shanxi Province: An early microblade sites in north China[J]. Journal of Archaeological Science, 2017,79:19-35
doi: 10.1016/j.jas.2017.01.007 URL |
[50] |
Patania I, Goldberg P, Cohen DJ, et al. Micromorphological analysis of the deposits at the early pottery Xianrendong cave site, China: formation processes and site use in the Late Pleistocene[J]. Archaeological and Anthropological Sciences, 2019,11:4229-4249
doi: 10.1007/s12520-019-00788-6 |
[51] |
Li ZY, Wu XJ, Zhou LP, et al. Late Pleistocene Archaic Human Crania from Xuchang, China[J]. Science, 2017,355(6328):969-972
doi: 10.1126/science.aal2482 URL |
[52] |
Li H, Li ZY, Gao X, et al. Technological behavior of the early Late Pleistocene archaic humans at Lingjing (Xuchang, China)[J]. Archaeological and Anthropological Sciences, 2019,11:3477-3490
doi: 10.1007/s12520-018-0759-7 URL |
[53] |
Li H, Li ZY, Lotter MG, et al. Formation processes at the early Late Pleistocene archaic human site of Lingjing, China[J]. Journal of Archaeological Science, 2018,96:73-84
doi: 10.1016/j.jas.2018.05.004 URL |
[54] | 李意愿, 李浩. 湖南临澧发掘伞顶盖旧石器遗址[N]. 中国文物报, 2019-12-20(8) |
[55] | 杨立辉, 叶玮, 朱丽东, 等. 第四纪加积型红土与黄土的风成相似性探讨[J]. 干旱区地理(汉文版), 2008,31(3):341-346 |
[56] | 朱丽东, 姜永见, 张明强, 等. 庐山JL剖面红土磁化率特征及古环境记录[J]. 山地学报, 2011,29(4):385-394 |
[57] | Renfrew C. Archaeology and the earth sciences[A]. In: Davidson DA, Shackley ML (Eds.). Geoarchaeology: Earth science and the Past[C]. London: Duckworth, 1976, 1-5 |
[58] | Stein JK. A review of site formation processes and their relevance to geoarchaeology[A]. In: Goldberg P, Holliday VT, Ferring CR (Eds.). Earth Sciences and Archaeology[C]. New York: Plenum Publishers, 2001, 37-51 |
[1] | 李锋, 姜莉君. 关于旧石器时代遗址发掘报告撰写的思考[J]. 人类学学报, 2023, 42(05): 701-708. |
[2] | 叶芷, 杜雨薇, 裴树文, 丁馨, 徐哲, 马东东. 蔚县盆地吉家庄旧石器遗址的形成过程[J]. 人类学学报, 2023, 42(01): 46-60. |
[3] | 张月书, 李锋, 陈福友, 仪明洁, 高星. 泥河湾盆地东谷坨遗址6A2层的形成过程[J]. 人类学学报, 2023, 42(01): 61-74. |
[4] | 裴树文. 中国古人类活动遗址形成过程研究的进展与思考[J]. 人类学学报, 2021, 40(03): 349-362. |
[5] | 任进成, 王法岗, 李锋, 杨庆江, 陈福友, 高星. 泥河湾盆地板井子旧石器时代遗址的形成过程[J]. 人类学学报, 2021, 40(03): 378-392. |
[6] | 裴树文. 旧石器时代旷野遗址形成过程研究综述[J]. 人类学学报, 2019, 38(01): 1-18. |
[7] | 李占扬;李浩;吴秀杰. 许昌人遗址研究的新收获及展望[J]. 人类学学报, 2018, 37(02): 219-227. |
[8] | 关莹;蔡回阳;王晓敏;许春华;郑远文;张忠文;邢松;高星. 贵州毕节老鸦洞遗址2013年发掘报告[J]. 人类学学报, 2015, 34(04): 461-477. |
[9] | 李锋;陈福友;李罡;王山;高星. 甘肃徐家城旧石器遗址石制品拼合研究[J]. 人类学学报, 2015, 34(02): 180-191. |
[10] | 董为; 李占扬. 河南许昌灵井遗址的晚更新世鹿科化石新种类[J]. 人类学学报, 2009, 28(03): 319-326. |
[11] | 李占扬;董为. 河南许昌灵井旧石器遗址哺乳动物群的性质及时代探讨[J]. 人类学学报, 2007, 26(04): 345-360. |
[12] | 张乐;汤卓炜. 有关北京猿人生存环境的探讨[J]. 人类学学报, 2007, 26(01): 34-44. |
[13] | 陈子文;李建军;范雪春. 万寿岩旧石器时代遗址埋藏学研究[J]. 人类学学报, 2006, 25(03): 220-226. |
[14] | 李建军;范雪春. 船帆洞旧石器遗址洞穴形成过程与地层划分[J]. 人类学学报, 2006, 25(02): 153-160. |
[15] | 董为;金昌柱;郑龙亭;孙承凯;吕锦燕;徐钦琦. 安徽芜湖金盆洞旧石器遗址的偶蹄类[J]. 人类学学报, 2006, 25(02): 161-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||