人类学学报 ›› 2022, Vol. 41 ›› Issue (04): 576-592.doi: 10.16359/j.1000-3193/AAS.2022.0028cstr: 32091.14.j.1000-3193/AAS.2022.0028
收稿日期:
2022-04-02
修回日期:
2022-05-19
出版日期:
2022-08-12
发布日期:
2022-08-10
作者简介:
倪喜军,研究员,主要从事古灵长类学与古人类学研究。Email: 基金资助:
Received:
2022-04-02
Revised:
2022-05-19
Online:
2022-08-12
Published:
2022-08-10
摘要:
解剖结构上的现代人是指具有近圆球形头骨、短而平的面颅、纤细的骨骼等特征的区别于其他古老人类的化石和现今的人群。支持多地区演化模型和支持近期非洲起源模型的学者,在“解剖结构上的现代人”的应用范围方面是不同的,前者以连续演化为基本思想,认为这一名词只包括智人中较进步的类群;而后者以分支系统学思想为基础,认为包括所有智人。分子古生物学研究显示,尼人、丹人和智人在遗传学水平上属于不同的人种。新近的以标本-种群为单元的系统分析,因为不是以属、种等分类学阶元进行的,因此与分类学的阶元划分无关。该系统分析的结果显示智人属于单系类群,哈尔滨人、大荔人等组成其姊妹群。尼人与智人的分异早于1百万年,与基因组水平的谱系分析相符合。多次多向的穿梭扩散是统计学上符合系统关系的模型。
中图分类号:
倪喜军. 新证据下的现代人起源模型[J]. 人类学学报, 2022, 41(04): 576-592.
NI Xijun. Modeling the origin of modern humans in light of new evidence[J]. Acta Anthropologica Sinica, 2022, 41(04): 576-592.
图1 包含55个人属化石类群的系统谱系树 节点时间采用贝叶斯支端定年分析推断。蓝色短棒指示节点时间的95%最高后验密度置信区间。枝长与分异时间成比例,以千年为单位。红色分枝指示最简约树的背骨法拓扑约束。依据文献[95](Ni等)修改。
Fig.1 Phylogeny of the 55 selected fossil groups from the genus Homo Numbers at the internal nodes are the median ages inferred from Bayesian tip-dating analyses. The blue bars indicate the 95% highest posterior density interval of the node ages. Branch lengths are proportional to the division ages in thousand years. The branches in red indicate the backbone constraints based on the most parsimonious trees. Modified from the reference [95] of Ni et al
图2 “穿梭扩散”模型显示的多次多方向的扩散事件 “穿梭扩散”模型显示在人属物种或种群在亚洲、欧洲和非洲之间存在多次多方向的扩散事件。黑色箭头指示走出非洲,红色箭头指示走入非洲。粗体数字显示贝叶斯支端定年推测的时间(千年),源自文献[95](Ni等)。色块阴影和斜体字显示基因组谱系分析推测的现代人祖先单体型在不同时间段的地理分布范围,数据源自文献[106] (Wohns等)。
Fig.2 “Shuttle dispersal” model suggesting multiple multi-directional dispersal events “Shuttle dispersal” model suggesting multiple multi-directional dispersal events of Homo species/pupulation among Asia, Europe and Africa. Black arrows indicate dispersing out of Africa, and red arrows indicate dispersing into Africa. Bold numbers indicate the dispersal dates in kyr inferred from Bayesian tip-dating analyses from Ni et al[95]. Colored shadows and italic numbers indicate the geographic distribution areas of ancestral haplotypes of different time periods, which were estimated from genealogy analyses based on genomic data from Wohns et al[106]
[1] | Klein RG. The human career. Human biology and cultural origins. Third edition[M]. Chicago and London: The University of Chicago, 2009, 1-989 |
[2] |
Stringer CB, Andrews P. Genetic and fossil evidence for the origin of modern humans[J]. Science, 1988, 239: 1263-1268
doi: 10.1126/science.3125610 pmid: 3125610 |
[3] | Stringer CB, Hublin JJ, Vandermeersch B. The origin of anatomically modern humans in western Europe[A]. In: Smith FH, Spencer F (Eds.). The origins of modern humans: a world survey of the fossil evidence[C]. New York: Alan R. Liss, Inc., 1984, 51-135 |
[4] | 吴汝康. 古人类学[M]. 北京: 文物出版社, 1989, 1-256 |
[5] |
Wu X, Pei S, Cai Y, et al. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China[J]. Journal of Human Evolution, 2021, 161: 103052
doi: 10.1016/j.jhevol.2021.103052 URL |
[6] |
Wu XJ, Pei SW, Cai YJ, et al. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation[J]. Proceedings of the National Academy of Sciences, 2019, 116: 9820
doi: 10.1073/pnas.1902396116 URL |
[7] |
Braidwood RJ. Asiatic prehistory and the origin of man[J]. Journal of Near Eastern Studies, 1947, 6: 30-42
doi: 10.1086/370810 URL |
[8] | Smith FH. Migrations, radiations and continuity: patterns in the evolution of Middle and Late Pleistocene humans[A]. In: Hartwig WC (Ed.). The primate fossil record[C]. Cambridge: Cambridge University Press, 2002, 437-456 |
[9] |
Weidenreich F. Giant early man from Java and South China[J]. Science, 1944, 99: 479-482
pmid: 17792233 |
[10] |
Weidenreich F. The trend of human evolution[J]. Evolution, 1947, 1: 221-236
doi: 10.1111/j.1558-5646.1947.tb02720.x URL |
[11] | Jr Movius HL. Early man and Pleistocene stratigraphy in southern and eastern Asia[J]. Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University, 1944, 19: 1-125 |
[12] |
Thorne AG, Macumber PG. Discoveries of Late Pleistocene man at Kow Swamp, Australia[J]. Nature, 1972, 238: 316-319
doi: 10.1038/238316a0 URL |
[13] |
Thorne AG, Wolpoff MH. Regional continuity in Australasian Pleistocene hominid evolution[J]. American Journal of Physical Anthropology, 1981, 55: 337-349
doi: 10.1002/ajpa.1330550308 URL |
[14] | Wolpoff MH, Wu X, Thorne AG. Modem Homo sapiens origins: a general theory of hominid evolution involving the fossil evidence from East Asia[A]. In: Smith FH, Spencer F (Eds.). The origins of modern humans: a world survey of the fossil evidence[C]. New York: Alan R. Liss, Inc., 1984, 411-483 |
[15] |
Weiss KM, Maruyama T. Archeology, population genetics and studies of human racial ancestry[J]. American Journal of Physical Anthropology, 1976, 44: 31-49
doi: 10.1002/ajpa.1330440106 pmid: 1247111 |
[16] |
Thorne AG, Wolpoff MH. The multiregional evolution of humans[J]. Scientific American, 1992, 266: 76-83
pmid: 1566033 |
[17] |
Curnoe D. Possible causes and significance of cranial robusticity among Pleistocene-Early Holocene Australians[J]. Journal of Archaeological Science, 2009, 36: 980-990
doi: 10.1016/j.jas.2008.11.021 URL |
[18] | 吴新智. 大荔中更新世人类颅骨[M]. 北京: 科学出版社, 2020, 1-205 |
[19] | 杜靖, 吴新智. 中国人类化石的主要发现和理论探索[J]. 古生物学报, 2009, 48: 302-313 |
[20] | 吴新智. 中国和欧洲早期智人的比较研究[J]. 人类学学报, 1988, 7: 287-293 |
[21] |
Johnson MJ, Wallace DC, Ferris SD, et al. Radiation of human mitochondria DNA types - analyzed by restriction endonuclease cleavage patterns[J]. Journal of Molecular Evolution, 1983, 19: 255-271
doi: 10.1007/BF02099973 URL |
[22] | 雷晓云, 袁德健, 张野, 等. 基于DNA分子的现代人起源研究--35年回顾与展望[J]. 人类学学报, 2018, 37: 270-283 |
[23] | 张野, 黄石. 古DNA的新发现支持现代人东亚起源说[J]. 人类学学报, 2019, 38: 491-498 |
[24] | Cavalli-Sforza LL, Menozzi P, Piazza A. The history and geography of human genes[M]. Princeton: Princeton University Press, 1994, 1-413 |
[25] |
Excoffier L. Evolution of human mitochondrial DNA: Evidence for departure from a pure neutral model of populations at equilibrium[J]. Journal of Molecular Evolution, 1990, 30: 125-139
doi: 10.1007/BF02099939 pmid: 1968979 |
[26] |
Excoffier L, Langaney A. Origin and differentiation of human mitochondrial DNA[J]. American journal of human genetics, 1989, 44: 73-85
pmid: 2562823 |
[27] |
Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution[J]. Nature, 1987, 325: 31-36
doi: 10.1038/325031a0 URL |
[28] |
Behar Doron M, van Oven M, Rosset S, et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root[J]. The American Journal of Human Genetics, 2012, 90: 675-684
doi: 10.1016/j.ajhg.2012.03.002 URL |
[29] |
Gonder MK, Mortensen HM, Reed FA, et al. Whole-mtDNA genome sequence analysis of ancient African lineages[J]. Molecular Biology and Evolution, 2007, 24: 757-768
doi: 10.1093/molbev/msl209 URL |
[30] |
van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation[J]. Human Mutation, 2009, 30: E386-94
doi: 10.1002/humu.20921 URL |
[31] |
Hallast P, Agdzhoyan A, Balanovsky O, et al. A Southeast Asian origin for present-day non-African human Y chromosomes[J]. Human genetics, 2021, 140: 299-307
doi: 10.1007/s00439-020-02204-9 URL |
[32] |
Smith FH, Falsetti AB, Donnelly SM. Modern human origins[J]. American Journal of Physical Anthropology, 1989, 32: 35-68
doi: 10.1002/ajpa.1330320504 URL |
[33] | Bräuer G. The “Afro-European sapiens-hypothesis”, and hominid evolution in East Asia during the late Middle and Upper Pleistocene[J]. Courier Forschungsinstitut Senckenberg, 1984, 69: 145-165 |
[34] | Stringer CB. A multivariate study of cranial variation in Middle and Upper Pleistocene human populations[D]. Univeristy of Bristol, 1974 |
[35] |
Stringer CB. A numerical cladistic analysis for the genus Homo[J]. Journal of Human Evolution, 1987, 16: 135-146
doi: 10.1016/0047-2484(87)90064-9 URL |
[36] |
Tattersall I. Species recognition in human paleontology[J]. Journal of Human Evolution, 1986, 15: 165-175
doi: 10.1016/S0047-2484(86)80043-4 URL |
[37] |
Loewe L, Scherer S. Mitochondrial Eve: the plot thickens[J]. Trends in Ecology & Evolution, 1997, 12: 422-423
doi: 10.1016/S0169-5347(97)01204-4 URL |
[38] |
Stewart JR, Stringer CB. Human evolution out of africa: the role of refugia and climate change[J]. Science, 2012, 335: 1317-1321
doi: 10.1126/science.1215627 pmid: 22422974 |
[39] |
Bergström A, Stringer C, Hajdinjak M, et al. Origins of modern human ancestry[J]. Nature, 2021, 590: 229-237
doi: 10.1038/s41586-021-03244-5 URL |
[40] |
Ermini L, Der Sarkissian C, Willerslev E, et al. Major transitions in human evolution revisited: a tribute to ancient DNA[J]. Journal of Human Evolution, 2015, 79: 4-20
doi: 10.1016/j.jhevol.2014.06.015 pmid: 25532800 |
[41] |
Llamas B, Willerslev E, Orlando L. Human evolution: a tale from ancient genomes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372: 20150484
doi: 10.1098/rstb.2015.0484 URL |
[42] |
Pääbo S. Molecular cloning of ancient Egyptian mummy DNA[J]. Nature, 1985, 314: 644-645
doi: 10.1038/314644a0 URL |
[43] |
Krings M, Stone A, Schmitz RW, et al. Neandertal DNA sequences and the origin of modern humans[J]. Cell, 1997, 90: 19-30
pmid: 9230299 |
[44] |
Green RE, Malaspinas AS, Krause J, et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing[J]. Cell, 2008, 134: 416-426
doi: 10.1016/j.cell.2008.06.021 URL |
[45] |
Green Richard E, Krause J, Briggs Adrian W, et al. A draft sequence of the Neandertal genome[J]. Science, 2010, 328: 710-722
doi: 10.1126/science.1188021 pmid: 20448178 |
[46] |
Bokelmann L, Hajdinjak M, Peyrégne S, et al. A genetic analysis of the Gibraltar Neanderthals[J]. Proceedings of the National Academy of Sciences, 2019, 116: 15610
doi: 10.1073/pnas.1903984116 URL |
[47] |
Arsuaga JL, Martínez I, Arnold LJ, et al. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos[J]. Science, 2014, 344: 1358
doi: 10.1126/science.1253958 pmid: 24948730 |
[48] |
Meyer M, Arsuaga JL, de Filippo C, et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins[J]. Nature, 2016, 531: 504
doi: 10.1038/nature17405 URL |
[49] |
Meyer M, Fu Q, Aximu-Petri A, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos[J]. Nature, 2014, 505: 403-406
doi: 10.1038/nature12788 URL |
[50] |
Prüfer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai Mountains[J]. Nature, 2014, 505: 43-49
doi: 10.1038/nature12886 URL |
[51] |
Douka K, Slon V, Jacobs Z, et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave[J]. Nature, 2019, 565: 640-644
doi: 10.1038/s41586-018-0870-z URL |
[52] |
Jacobs Z, Li B, Shunkov MV, et al. Timing of archaic hominin occupation of Denisova Cave in southern Siberia[J]. Nature, 2019, 565: 594-599
doi: 10.1038/s41586-018-0843-2 URL |
[53] |
Castellano S, Parra G, Sánchez-Quinto FA, et al. Patterns of coding variation in the complete exomes of three Neandertals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 6666-6671
doi: 10.1073/pnas.1405138111 pmid: 24753607 |
[54] |
Harris K, Nielsen R. The genetic cost of Neanderthal introgression[J]. Genetics, 2016, 203: 881-891
doi: 10.1534/genetics.116.186890 URL |
[55] |
Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual[J]. Science, 2012, 338: 222-226
doi: 10.1126/science.1224344 URL |
[56] |
Reich D, Green RE, Kircher M, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia[J]. Nature, 2010, 468: 1053-1060
doi: 10.1038/nature09710 URL |
[57] |
Sawyer S, Renaud G, Viola B, et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals[J]. Proceedings of the National Academy of Sciences, 2015, 112: 15696
doi: 10.1073/pnas.1519905112 URL |
[58] |
Fu Q, Hajdinjak M, Moldovan OT, et al. An early modern human from Romania with a recent Neanderthal ancestor[J]. Nature, 2015, 524: 216-219
doi: 10.1038/nature14558 URL |
[59] |
Fu Q, Li H, Moorjani P, et al. Genome sequence of a 45,000-year-old modern human from western Siberia[J]. Nature, 2014, 514: 445-449
doi: 10.1038/nature13810 URL |
[60] |
Fu Q, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan Cave, China[J]. Proceedings of the National Academy of Sciences, 2013, doi: 10.1073/pnas.1221359110
doi: 10.1073/pnas.1221359110 URL |
[61] | Hendy J. Ancient protein analysis in archaeology[J]. Science Advances, 2021, 7: eabb9314 |
[62] |
Welker F. Palaeoproteomics for human evolution studies[J]. Quaternary Science Reviews, 2018, 190: 137-147
doi: 10.1016/j.quascirev.2018.04.033 URL |
[63] |
Welker F, Ramos-Madrigal J, Gutenbrunner P, et al. The dental proteome of Homo antecessor[J]. Nature, 2020, 580: 235-238
doi: 10.1038/s41586-020-2153-8 URL |
[64] |
Hajdinjak M, Fu Q, Hübner A, et al. Reconstructing the genetic history of late Neanderthals[J]. Nature, 2018, 555: 652-656
doi: 10.1038/nature26151 URL |
[65] |
Petr M, Hajdinjak M, Fu Q, et al. The evolutionary history of Neanderthal and Denisovan Y chromosomes[J]. Science, 2020, 369: 1653-1656
doi: 10.1126/science.abb6460 URL |
[66] | Brown S, Massilani D, Kozlikin MB, et al. The earliest Denisovans and their cultural adaptation[J]. Nature Ecology & Evolution, 2022, 6: 28-35 |
[67] |
Chen F, Welker F, Shen CC, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019, 569: 409-412
doi: 10.1038/s41586-019-1139-x URL |
[68] | Hubisz MJ, Williams AL, Siepel A. Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph[J]. PLoS genetics, 2020, 16: e1008895 |
[69] |
Kuhlwilm M, Gronau I, Hubisz MJ, et al. Ancient gene flow from early modern humans into Eastern Neanderthals[J]. Nature, 2016, 530: 429-433
doi: 10.1038/nature16544 URL |
[70] |
Sankararaman S, Mallick S, Dannemann M, et al. The genomic landscape of Neanderthal ancestry in present-day humans[J]. Nature, 2014, 507: 354-357
doi: 10.1038/nature12961 URL |
[71] |
Vernot B, Akey Joshua M. Resurrecting surviving Neandertal lineages from modern human genomes[J]. Science, 2014, 343: 1017-1021
doi: 10.1126/science.1245938 URL |
[72] |
Chen L, Wolf AB, Fu W, et al. Identifying and interpreting apparent Neanderthal ancestry in African individuals[J]. Cell, 2020, 180: 677-687.e16
doi: S0092-8674(20)30059-3 pmid: 32004458 |
[73] |
Mallet J. Hybridization as an invasion of the genome[J]. Trends Ecol Evol, 2005, 20: 229-237
doi: 10.1016/j.tree.2005.02.010 pmid: 16701374 |
[74] |
Mallet J. Hybrid speciation[J]. Nature, 2007, 446: 279-283
doi: 10.1038/nature05706 URL |
[75] |
Lhota S, Yap JL, Benedict ML, et al. Is Malaysia’s “mystery monkey” a hybrid between Nasalis larvatus and Trachypithecus cristatus? An assessment of photographs[J]. International Journal of Primatology, 2022, doi: 10.1007/s10764-022-00293-z
doi: 10.1007/s10764-022-00293-z URL |
[76] |
Zinner D, Roos C. So what is a species anyway? A primatological perspective[J]. Evolutionary Anthropology: Issues, News, and Reviews, 2014, 23: 21-23
doi: 10.1002/evan.21390 URL |
[77] |
Currat M, Excoffier L. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression[J]. Proceedings of the National Academy of Sciences, 2011, 108: 15129
doi: 10.1073/pnas.1107450108 URL |
[78] |
Dannemann M, Andrés Aida M, Kelso J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors[J]. The American Journal of Human Genetics, 2016, 98: 22-33
doi: 10.1016/j.ajhg.2015.11.015 URL |
[79] |
Huerta-Sánchez E, Jin X, Asan, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA[J]. Nature, 2014, 512: 194-197
doi: 10.1038/nature13408 URL |
[80] |
Mendez Fernando L, Watkins Joseph C, Hammer Michael F. A haplotype at STAT2 introgressed from Neanderthals and serves as a candidate of positive selection in Papua New Guinea[J]. The American Journal of Human Genetics, 2012, 91: 265-274
doi: 10.1016/j.ajhg.2012.06.015 URL |
[81] | Racimo F, Gokhman D, Fumagalli M, et al. Archaic adaptive introgression in TBX15/WARS2[J]. Molecular biology and evolution, 2017, 34: 509-524 |
[82] |
Racimo F, Sankararaman S, Nielsen R, et al. Evidence for archaic adaptive introgression in humans[J]. Nature reviews. Genetics, 2015, 16: 359-371
doi: 10.1038/nrg3936 URL |
[83] |
Simonti Corinne N, Vernot B, Bastarache L, et al. The phenotypic legacy of admixture between modern humans and Neandertals[J]. Science, 2016, 351: 737-741
doi: 10.1126/science.aad2149 pmid: 26912863 |
[84] |
Ferring R, Oms O, Agustí J, et al. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85-1.78 Ma[J]. Proceedings of the National Academy of Sciences, 2011, 108: 10432
doi: 10.1073/pnas.1106638108 URL |
[85] |
Lordkipanidze D, Ponce de León MS, Margvelashvili A, et al. A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo[J]. Science, 2013, 342: 326
doi: 10.1126/science.1238484 pmid: 24136960 |
[86] |
Vekua A, Lordkipanidze D, Rightmire GP, et al. A new skull of early Homo from Dmanisi, Georgia[J]. Science, 2002, 297: 85-89
doi: 10.1126/science.1072953 URL |
[87] | Berger LR, Hawks J, de Ruiter DJ, et al. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa[J]. eLife, 2015, 4: e09560 |
[88] | Hawks J, Elliott M, Schmid P, et al. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa[J]. eLife, 2017, 6: e24232 |
[89] |
Brown P, Sutikna T, Morwood M, et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia[J]. Nature, 2004, 431: 1055-1061
doi: 10.1038/nature02999 URL |
[90] |
Détroit F, Mijares AS, Corny J, et al. A new species of Homo from the Late Pleistocene of the Philippines[J]. Nature, 2019, 568: 181-186
doi: 10.1038/s41586-019-1067-9 URL |
[91] | Tocheri MW. Unknown human species found in Asia[J]. Nature, 2019 |
[92] |
Chang CH, Kaifu Y, Takai M, et al. The first archaic Homo from Taiwan[J]. Nature Communications, 2015, 6: 6037
doi: 10.1038/ncomms7037 URL |
[93] |
Li ZY, Wu XJ, Zhou LP, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017, 355: 969-972
doi: 10.1126/science.aal2482 URL |
[94] |
Ji Q, Wu W, Ji Y, et al. Late Middle Pleistocene Harbin cranium represent a new Homo species[J]. The Innovation, 2021, 2: 100132
doi: 10.1016/j.xinn.2021.100132 URL |
[95] |
Ni X, Ji Q, Wu W, et al. Massive cranium from Harbin establishes a new Middle Pleistocene human lineage in China[J]. The Innovation, 2021, 2: 100130
doi: 10.1016/j.xinn.2021.100130 URL |
[96] |
Hublin JJ, Ben-Ncer A, Bailey SE, et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens[J]. Nature, 2017, 546: 289
doi: 10.1038/nature22336 URL |
[97] |
Harvati K, Röding C, Bosman AM, et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia[J]. Nature, 2019, 571: 500-504
doi: 10.1038/s41586-019-1376-z URL |
[98] |
Liu W, Jin CZ, Zhang YQ, et al. Human remains from Zhirendong, South China, and modern human emergence in East Asia[J]. Proceedings of the National Academy of Sciences, 2010, 107: 19201-19206
doi: 10.1073/pnas.1014386107 URL |
[99] |
Liu W, Martinón-Torres M, Cai Yj, et al. The earliest unequivocally modern humans in southern China[J]. Nature, 2015, 526: 696
doi: 10.1038/nature15696 URL |
[100] |
Liu W, Athreya S, Xing S, et al. Hominin evolution and diversity: a comparison of earlier-Middle and later-Middle Pleistocene hominin fossil variation in China[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377: 20210040
doi: 10.1098/rstb.2021.0040 URL |
[101] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石形态多样性及其演化意义[J]. 人类学学报, 2022, 41(4): 563-575 |
[102] |
邢松. 现代人出现和演化的化石证据[J]. 人类学学报, 2022, 41(e). doi: 10.16359/j.1000-3193/AAS.2022.0036
doi: 10.16359/j.1000-3193/AAS.2022.0036 URL |
[103] | Derevianko AP. The origin of anatomically modern humans and their behavior in Africa and Eurasia[J]. Archaeology, Ethnology and Anthropology of Eurasia, 2011, 39: 2-31 |
[104] | Derevianko AP. Upper Paleolithic in Africa and Eurasia and the formation of a human of the modern anatomical type[M]. Novosibirsk:Instiute of Archaeology and Ethnography,Siberian Branch of the Russian Academy of Sciences, 2011, 1-560 |
[105] |
Zhang D, Xia H, Chen F, et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau[J]. Science, 2020, 370: 584
doi: 10.1126/science.abb6320 URL |
[106] | Wohns AW, Wong Y, Jeffery B, et al. A unified genealogy of modern and ancient genomes[J]. Science, 2022, 375: eabi8264 |
[1] | 贺乐天, 王永强, 魏文斌. 新疆哈密拉甫却克墓地人的颅面部测量学特征[J]. 人类学学报, 2022, 41(06): 1017-1027. |
[2] | 刘鑫, 张兴华, 宇克莉, 刘艳霞, 包金萍, 郑连斌. 生物电阻抗法测定广西京族的体成分[J]. 人类学学报, 2022, 41(06): 1028-1036. |
[3] | 沙仁高娃, 程慧珍, 韦兰海. 达斡尔语分支早期在蒙古语族中的地位[J]. 人类学学报, 2022, 41(06): 1037-1046. |
[4] | 邢松. 现代人出现和演化的化石证据[J]. 人类学学报, 2022, 41(06): 1069-1082. |
[5] | 李小强. 农业的起源、传播与影响[J]. 人类学学报, 2022, 41(06): 1097-1108. |
[6] | 刘武, 吴秀杰. 中更新世晚期中国古人类化石的形态多样性及其演化意义[J]. 人类学学报, 2022, 41(04): 563-575. |
[7] | Francesc RIBOT Trafí, Mario GARCÍA Bartual, Alfredo José ALTAMIRANO Enciso, 王谦. 犬齿窝与人类中面部骨骼的演化[J]. 人类学学报, 2022, 41(02): 193-217. |
[8] | 刘武, 吴秀杰, 邢松. 更新世中期中国古人类演化区域连续性与多样性的化石证据[J]. 人类学学报, 2019, 38(04): 473-490. |
[9] | 吴秀杰, 张伟. 中国古人类颅容量的推算方法比较[J]. 人类学学报, 2019, 38(04): 513-524. |
[10] | 关莹;周振宇;范雪春;高星. 牙齿残留物反映的闽西新石器时代人类食谱[J]. 人类学学报, 2018, 37(04): 631-639. |
[11] | 王元;赵凌霞;杜抱朴;张立召;王新金;蔡回阳. 贵州毕节麻窝口洞与智人伴生的长鼻类化石[J]. 人类学学报, 2017, 36(03): 414-425. |
[12] | 董为;王元;金昌柱;秦大公;徐钦琦;张立民. 广西崇左公鸡山与智人伴生的偶蹄类[J]. 人类学学报, 2014, 33(03): 355-368. |
[13] | 吴秀杰; 金昌柱; 蔡演军; 张颖琦; 王元; 秦大公; 潘文石. 广西崇左智人洞早期现代人龋病及牙槽骨异常研究[J]. 人类学学报, 2013, 32(03): 293-301. |
[14] | LS Chamyal; A Dambricourt Malassé; DM Maurya; Rachna Raj; N Juyal; S Bhandari; RK Pant; C Gaillard; 崔娅铭. 印度纳尔玛达地区发现的粗壮智人化石及其与亚洲直立人的连续性[J]. 人类学学报, 2011, 30(02): 158-191. |
[15] | 孙承凯; 周蜜; 邢松. 沂源人牙冠的几何形态学研究[J]. 人类学学报, 2011, 30(01): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||