人类学学报 ›› 2022, Vol. 41 ›› Issue (06): 1083-1096.doi: 10.16359/j.1000-3193/AAS.2022.0051cstr: 32091.14.j.1000-3193/AAS.2022.0051
收稿日期:
2021-12-01
修回日期:
2022-03-14
出版日期:
2022-12-15
发布日期:
2022-12-19
作者简介:
饶慧芸,副研究员,主要从事古蛋白质和有机残留物研究。E-mail:基金资助:
Received:
2021-12-01
Revised:
2022-03-14
Online:
2022-12-15
Published:
2022-12-19
摘要:
东亚古人类演化是学术界关注的热点科学问题,国内外学者对此进行了多学科的相关研究,取得了很多重要进展,但仍然存在许多尚未解决的问题。古蛋白质分析近年来成为古生物演化领域的又一个前沿和热点方向,取得了一系列重要突破。较之古DNA,古蛋白质的保存优势使其可以在时间上和地域上突破古DNA的限制,在古人类演化领域大有可为。东亚古人类化石丰富且时段大致连续,但更新世或更早时期的分子证据非常缺乏。本文从古蛋白质分析的发展史、研究潜力、难点与挑战以及思考与展望等几方面,对古蛋白质分析在东亚古人类演化研究中的应用前景进行梳理与思考。相信随着更多分子证据的积累,古蛋白质分析可为东亚古人类的演化脉络提供更多关键性的线索,极大地促进人类演化研究。
中图分类号:
饶慧芸. 古蛋白质分析在东亚古人类演化中的应用前景[J]. 人类学学报, 2022, 41(06): 1083-1096.
RAO Huiyun. An application prospect of paleoproteomic analysis in the evolution of East Asian populations[J]. Acta Anthropologica Sinica, 2022, 41(06): 1083-1096.
[1] | 刘武, 吴秀杰, 邢松, 等. 中国古人类化石[M]. 北京: 科学出版社, 2014 |
[2] | 刘武, 吴秀杰, 邢松. 现代人的出现与扩散——中国的化石证据[J]. 人类学学报, 2016, 35(2):161-171 |
[3] | 刘武, 吴秀杰, 邢松. 更新世中期中国古人类演化区域连续性与多样性的化石证据[J]. 人类学学报, 2019, 38(4): 473-490 |
[4] | 刘武, 邢松, 吴秀杰. 中更新世晚期以来中国古人类化石形态特征的多样性[J]. 中国科学:地球科学, 2016, 46(7): 906-917 |
[5] | 吴秀杰. 中国古人类演化研究进展及相关热点问题探讨[J]. 科学通报, 2018, 63(21): 2148-2155 |
[6] | 吴秀杰. 中国发现的主要直立人头骨化石[J]. 科学, 2019, 71(3): 20-24 |
[7] | 刘武, 邢松, 张银运. 中国直立人牙齿特征变异及其演化意义[J]. 人类学学报, 2015, 34(4): 425-441 |
[8] |
Wu XJ, Pei SW, Cai YJ, et al. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China[J]. Journal of Human Evolution, 2021, 161: 103052
doi: 10.1016/j.jhevol.2021.103052 URL |
[9] |
Ke YH, Su B, Song XF, et al. African origin of modern humans in East Asia: A tale of 12,000 Y chromosomes[J]. Science, 2001, 292(5519): 1151-1153
pmid: 11349147 |
[10] |
Zhang DJ, Xia H, Chen FH, et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau[J]. Science, 2020, 370(6516): 584-587
doi: 10.1126/science.abb6320 pmid: 33122381 |
[11] |
Wang CC, Yeh HY, Popov AN, et al. Genomic insights into the formation of human populations in East Asia[J]. Nature, 2021, 591(7850): 413-419
doi: 10.1038/s41586-021-03336-2 URL |
[12] |
Zhang F, Ning C, Scott A, et al. The genomic origins of the Bronze Age Tarim Basin mummies[J]. Nature, 2021, 599(7884): 256-261
doi: 10.1038/s41586-021-04052-7 URL |
[13] |
Robbeets M, Bouckaert R, Conte M, et al. Triangulation supports agricultural spread of the Transeurasian languages[J]. Nature, 2021, 599: 616-621
doi: 10.1038/s41586-021-04108-8 URL |
[14] |
Mao XW, Zhang HC, Qiao SY, et al. The deep population history of northern East Asia from the Late Pleistocene to the Holocene[J]. Cell, 2021, 184(12): 3256-3266.e3213
doi: 10.1016/j.cell.2021.04.040 pmid: 34048699 |
[15] |
Wang TY, Wang W, Xie GM, et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago[J]. Cell, 2021, 184(14): 3829-3841.e3821
doi: 10.1016/j.cell.2021.05.018 pmid: 34171307 |
[16] |
Yang MA, Fan XC, Sun B, et al. Ancient DNA indicates human population shifts and admixture in northern and southern China[J]. Science, 2020, 369(6501): 282-288
doi: 10.1126/science.aba0909 pmid: 32409524 |
[17] |
Bai F, Zhang XL, Ji XP, et al. Paleolithic genetic link between Southern China and Mainland Southeast Asia revealed by ancient mitochondrial genomes[J]. Journal of Human Genetics, 2020, 65(12): 1125-1128
doi: 10.1038/s10038-020-0796-9 URL |
[18] |
Liu YL, Wang TY, Wu XC, et al. Maternal genetic history of southern East Asians over the past 12,000 years[J]. Journal of Genetics and Genomics, 2021, 48(10): 899-907
doi: 10.1016/j.jgg.2021.06.002 pmid: 34419425 |
[19] |
Demarchi B, Hall S, Roncal-Herrero T, et al. Protein sequences bound to mineral surfaces persist into deep time[J]. Elife, 2016, 5: e17092
doi: 10.7554/eLife.17092 URL |
[20] |
Welker F, Ramos-Madrigal J, Kuhlwilm M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine[J]. Nature, 2019, 576: 262-265
doi: 10.1038/s41586-019-1728-8 URL |
[21] |
Welker F, Hajdinjak M, Talamo S, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne[J]. Proceedings of the National Academy of Sciences, 2016, 113(4): 11162-11167
doi: 10.1073/pnas.1605834113 URL |
[22] | Presslee S, Slater GJ, Pujos F, et al. Palaeoproteomics resolves sloth relationships[J]. Nature Ecology & Evolution, 2019, 3: 1121-1130 |
[23] |
Cappellini E, Welker F, Pandolfi L, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny[J]. Nature, 2019, 574: 103-107
doi: 10.1038/s41586-019-1555-y URL |
[24] |
Chen FH, Welker F, Shen CC, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019, 569(7756): 409-412
doi: 10.1038/s41586-019-1139-x URL |
[25] |
Welker F, Ramos-Madrigal J, Gutenbrunner P, et al. The dental proteome of Homo antecessor[J]. Nature, 2020, 580: 235-238
doi: 10.1038/s41586-020-2153-8 URL |
[26] |
Cappellini E, Collins MJ, Gilbert MTP. Unlocking ancient protein palimpsests[J]. Science, 2014, 343(6177): 1320-1322
doi: 10.1126/science.1249274 pmid: 24653025 |
[27] |
Tomiak P, Penkman K, Hendy E, et al. Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons[J]. Quaternary Geochronology, 2013, 16: 87-109
doi: 10.1016/j.quageo.2012.07.001 URL |
[28] | Allentoft ME, Collins M, Harker D, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2012, 279(1748): 4724-4733 |
[29] |
Cappellini E, Jensen LJ, Szklarczyk D, et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins[J]. Journal of Proteome Research, 2011, 11(2): 917-926
doi: 10.1021/pr200721u URL |
[30] | Abelson PH. Paleobiochemistry: Organic constituents of fossils[M]. Washington, DC: Carnegie Institution of Washington, Yearbook, No 53, 1954: 97-101 |
[31] |
Abelson PH. Amino acids in fossils[J]. Science, 1954, 119(3096): 576
doi: 10.1126/science.119.3096.576 URL |
[32] | Demarchi B, Collins M. Amino acid racemization dating[J]. Encyclopedia of Earth Sciences, 2015: 13-26 |
[33] |
Penkman KE, Preece RC, Bridgland DR, et al. A chronological framework for the British Quaternary based on Bithynia opercula[J]. Nature, 2011, 476(7361): 446-449
doi: 10.1038/nature10305 URL |
[34] |
Craig OE, Collins MJ. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture[J]. Journal of Immunological Methods, 2000, 236(1): 89-97
doi: 10.1016/S0022-1759(99)00242-2 URL |
[35] |
Högberg A, Puseman K, Yost C. Integration of use-wear with protein residue analysis - a study of tool use and function in the south Scandinavian Early Neolithic[J]. Journal of Archaeological Science, 2009, 36(8): 1725-1737
doi: 10.1016/j.jas.2009.03.030 URL |
[36] |
Seeman MF, Nilsson NE, Summers GL, et al. Evaluating protein residues on Gainey phase Paleoindian stone tools[J]. Journal of Archaeological Science, 2008, 35(10): 2742-2750
doi: 10.1016/j.jas.2008.05.001 URL |
[37] |
Cartechini L, Vagnini M, Palmieri M, et al. Immunodetection of proteins in ancient paint media[J]. Accounts of Chemical Research, 2010, 43(6): 867-876
doi: 10.1021/ar900279d pmid: 20438070 |
[38] |
Scott DA, Warmlander S, Mazurek J, et al. Examination of some pigments, grounds and media from Egyptian cartonnage fragments in the Petrie Museum, University College London[J]. Journal of Archaeological Science, 2009, 36(3): 923-932
doi: 10.1016/j.jas.2008.12.011 URL |
[39] |
Zheng HL, Yang HL, Zhang W, et al. Insight of silk relics of mineralized preservation in Maoling Mausoleum using two enzyme-linked immunological methods[J]. Journal of Archaeological Science, 2020, 115: 105089
doi: 10.1016/j.jas.2020.105089 URL |
[40] |
Schweitzer MH, Suo Z, Avci R, et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein[J]. Science, 2007, 316(5822): 277-280
pmid: 17431179 |
[41] |
Bailleul AM, Zheng W, Horner JR, et al. Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage[J]. National Science Review, 2020, 7(4): 815-822
doi: 10.1093/nsr/nwz206 pmid: 34692099 |
[42] |
Pan YH, Zheng WX, Sawyer RH, et al. The molecular evolution of feathers with direct evidence from fossils[J]. Proceedings of the National Academy of Sciences, 2019, 116(8): 3018-3023
doi: 10.1073/pnas.1815703116 URL |
[43] | Pan YH, Zheng WX, Moyer AE, et al. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): E7900-E7907 |
[44] |
Ostrom PH, Schall M, Gandhi H, et al. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 1043-1050
doi: 10.1016/S0016-7037(99)00381-6 URL |
[45] |
Buckley M, Kansa SW, Howard S, et al. Distinguishing between archaeological sheep and goat bones using a single collagen peptide[J]. Journal of Archaeological Science, 2010, 37(1): 13-20
doi: 10.1016/j.jas.2009.08.020 URL |
[46] |
Buckley M, Collins M, Thomas-Oates J, et al. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009, 23(23): 3843-3854
doi: 10.1002/rcm.4316 pmid: 19899187 |
[47] |
Welker F, Soressi M, Rendu W, et al. Using ZooMS to identify fragmentary bone from the late Middle/Early Upper Palaeolithic sequence of Les Cottes, France[J]. Journal of Archaeological Science, 2015, 54: 279-286
doi: 10.1016/j.jas.2014.12.010 URL |
[48] |
Biard V, Gol’din P, Gladilina E, et al. Genomic and proteomic identification of Late Holocene remains: Setting baselines for Black Sea odontocetes[J]. Journal of Archaeological Science: Reports, 2017, 15: 262-271
doi: 10.1016/j.jasrep.2017.07.008 URL |
[49] | Presslee S, Wilson J, Woolley J, et al. The identification of archaeological eggshell using peptide markers[J]. STAR: Science & Technology of Archaeological Research, 2018, 4(1): 13-23 |
[50] |
Brown S, Higham T, Slon V, et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis[J]. Scientific Reports, 2016, 6: 23559
doi: 10.1038/srep23559 pmid: 27020421 |
[51] |
Slon V, Mafessoni F, Vernot B, et al. The genome of the offspring of a Neanderthal mother and a Denisovan father[J]. Nature, 2018, 561(7721): 113-116
doi: 10.1038/s41586-018-0455-x URL |
[52] |
Sinet-Mathiot V, Smith GM, Romandini M, et al. Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at Fumane (Italy)[J]. Scientific Reports, 2019, 9(1): 12350
doi: 10.1038/s41598-019-48706-z pmid: 31451791 |
[53] |
Dekker J, Sinet-Mathiot V, Spithoven M, et al. Human and cervid osseous materials used for barbed point manufacture in Mesolithic Doggerland[J]. Journal of Archaeological Science: Reports, 2021, 35: 102678
doi: 10.1016/j.jasrep.2020.102678 URL |
[54] |
Kirby D, Buckley M, Promise E, et al. Identification of collagen-based materials in cultural heritage[J]. Analyst, 2013, 138(17): 4849-4858
doi: 10.1039/c3an00925d pmid: 23807214 |
[55] |
Martisius NL, Welker F, Dogandžić T, et al. Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals[J]. Scientific Reports, 2020, 10(1): 7746
doi: 10.1038/s41598-020-64358-w pmid: 32385291 |
[56] |
Hendy J, Colonese AC, Franz I, et al. Ancient proteins from ceramic vessels at Çatalhöyük West reveal the hidden cuisine of early farmers[J]. Nature Communications, 2018, 9(1): 4064
doi: 10.1038/s41467-018-06335-6 pmid: 30283003 |
[57] |
Bleasdale M, Richter KK, Janzen A, et al. Ancient proteins provide evidence of dairy consumption in eastern Africa[J]. Nature Communications, 2021, 12(1): 632
doi: 10.1038/s41467-020-20682-3 pmid: 33504791 |
[58] |
Maixner F, Turaev D, Cazenave-Gassiot A, et al. The Iceman’s last meal consisted of fat, wild meat, and cereals[J]. Current Biology, 2018, 28(14): 2348-2355.e9
doi: S0960-9822(18)30703-6 pmid: 30017480 |
[59] |
Brandt LØ, Schmidt AL, Mannering U, et al. Species identification of archaeological skin objects from Danish Bogs: Comparison between mass spectrometry-based peptide sequencing and microscopy-based methods[J]. PLoS ONE, 2014, 9(9): e106875
doi: 10.1371/journal.pone.0106875 URL |
[60] | Li L, Gong YX, Yin H, et al. Different types of peptide detected by mass spectrometry among fresh silk and archaeological silk remains for distinguishing modern contamination[J]. PloS ONE, 2015, 10(7): e0132827 |
[61] |
Solazzo C, Heald S, Ballard MW, et al. Proteomics and Coast Salish blankets: A tale of shaggy dogs?[J]. Antiquity, 2011, 85(330): 1418-1432
doi: 10.1017/S0003598X00062141 URL |
[62] |
Dallongeville S, Richter M, Schäfer S, et al. Proteomics applied to the authentication of fish glue: Application to a 17th century artwork sample[J]. Analyst, 2013, 138(18): 5357-5364
doi: 10.1039/c3an00786c pmid: 23877283 |
[63] |
Rao HY, Li B, Yang YM, et al. Proteomic identification of organic additives in the mortars of ancient Chinese wooden buildings[J]. Analytical Methods, 2015, 7: 143-149
doi: 10.1039/C4AY01766H URL |
[64] |
Rao HY, Yang YM, Abuduresule I, et al. Proteomic identification of adhesive on a bone sculpture-inlaid wooden artifact from the Xiaohe Cemetery, Xinjiang, China[J]. Journal of Archaeological Science, 2015, 53: 148-155
doi: 10.1016/j.jas.2014.10.010 URL |
[65] |
Rebay-Salisbury K, Janker L, Pany-Kucera D, et al. Child murder in the Early Bronze Age: Proteomic sex identification of a cold case from Schleinbach, Austria[J]. Archaeological and Anthropological Sciences, 2020, 12: 265
doi: 10.1007/s12520-020-01199-8 pmid: 33123298 |
[66] |
Stewart NA, Gerlach RF, Gowland RL, et al. Sex determination of human remains from peptides in tooth enamel[J]. Proceedings of the National Academy of Sciences, 2017, 114(52): 13649-13654
doi: 10.1073/pnas.1714926115 URL |
[67] |
Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity[J]. Nature Genetics, 2014, 46(4): 336-344
doi: 10.1038/ng.2906 pmid: 24562188 |
[68] |
Hendy J, Collins M, Teoh KY, et al. The challenge of identifying tuberculosis proteins in archaeological tissues[J]. Journal of Archaeological Science, 2016, 66: 146-153
doi: 10.1016/j.jas.2016.01.003 URL |
[69] |
Buckley M. A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order ‘Bibymalagasia’[J]. PloS ONE, 2013, 8(3): e59614
doi: 10.1371/journal.pone.0059614 URL |
[70] |
Welker F, Collins MJ, Thomas JA, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates[J]. Nature, 2015, 522(7554): 81-84
doi: 10.1038/nature14249 URL |
[71] |
Welker F, Smith GM, Hutson JM, et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae[J]. PeerJ, 2017, 5: e3033
doi: 10.7717/peerj.3033 URL |
[72] |
Buckley M, Lawless C, Rybczynski N. Collagen sequence analysis of fossil camels, Camelops and c.f. Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North America[J]. Journal of Proteomics, 2019, 194: 218-225
doi: 10.1016/j.jprot.2018.11.014 URL |
[73] |
Welker F. Palaeoproteomics for human evolution studies[J]. Quaternary Science Reviews, 2018, 190: 137-147
doi: 10.1016/j.quascirev.2018.04.033 URL |
[74] |
Warren M. Move over, DNA: Ancient proteins are starting to reveal humanity’s history[J]. Nature, 2019, 570(7762): 433-436
doi: 10.1038/d41586-019-01986-x URL |
[75] |
Qu T, Tomar V. Understanding straining induced changes in thermal properties of tropocollagen-hydroxyapatite interfacial configurations[J]. International Journal of Experimental and Computational Biomechanics, 2015, 3(1): 62-81
doi: 10.1504/IJECB.2015.067685 URL |
[76] |
Smith CEL A. PJ, Agne A, et al. Amelogenesis imperfecta; Genes, proteins, and pathways[J]. Frontiers in Physiology, 2017, 8: 435
doi: 10.3389/fphys.2017.00435 pmid: 28694781 |
[77] | Schweitzer MH, Schroeter ER, Cleland TP, et al. Paleoproteomics of mesozoic dinosaurs and other Mesozoic fossils[J]. Paleoproteomics, 2019, 19(16): 1800251 |
[78] |
Saitta ET, Liang R, Lau MCY, et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities[J]. eLife, 2019, 8: e46205
doi: 10.7554/eLife.46205 URL |
[79] |
Asara JM, Schweitzer MH, Freimark LM, et al. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry[J]. Science, 2007, 316(5822): 280-285
pmid: 17431180 |
[80] |
Pevzner PA, Kim S, Ng J. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”[J]. Science, 2008, 321(5892): 1040
doi: 10.1126/science.1155006 pmid: 18719266 |
[81] | Buckley M, Walker A, Ho SY, et al. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”[J]. Science, 2008, 319(5859): 33 c |
[82] |
Schroeter ER, DeHart CJ, Cleland TP, et al. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of Cretaceous protein[J]. Journal of Proteome Research, 2017, 16(2): 920-932
doi: 10.1021/acs.jproteome.6b00873 pmid: 28111950 |
[83] |
Matthiesen H, Høier Eriksen AM, Hollesen J, et al. Bone degradation at five Arctic archaeological sites: Quantifying the importance of burial environment and bone characteristics[J]. Journal of Archaeological Science, 2021, 125: 105296
doi: 10.1016/j.jas.2020.105296 URL |
[84] |
Kimura S, Ohno Y. Fish type I collagen: Tissue-specific existence of two molecular forms, (α1)2α2 and α1α2α3, in Alaska pollack[J]. Comparative Biochemistry Physiology Part B: Comparative Biochemistry, 1987, 88(2): 409-413
doi: 10.1016/0305-0491(87)90320-8 URL |
[85] | Buckley M. Zooarchaeology by mass spectrometry (ZooMS) collagen fingerprinting for the species identification of archaeological bone fragments[M]. Zooarchaeology in Practice. Springer. 2018: 227-247 |
[86] |
Hajdinjak M, Fu Q, Hübner A, et al. Reconstructing the genetic history of late Neanderthals[J]. Nature, 2018, 555(7698): 652-656
doi: 10.1038/nature26151 URL |
[87] |
Prüfer K, de Filippo C, Grote S, et al. A high-coverage Neandertal genome from Vindija Cave in Croatia[J]. Science, 2017, 358(6363): 655-658
doi: 10.1126/science.aao1887 pmid: 28982794 |
[88] |
Meyer M, Arsuaga JL, de Filippo C, et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins[J]. Nature, 2016, 531(7595): 504-507
doi: 10.1038/nature17405 URL |
[89] |
Prüfer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai mountains[J]. Nature, 2014, 505(7481): 43-49
doi: 10.1038/nature12886 URL |
[90] |
Castellano S, Parra G, Sánchez-Quinto F, et al. Patterns of coding variation in the complete exomes of three Neandertals[J]. Proceedings of the National Academy of Sciences, 2014, 111(18): 6666-6671
doi: 10.1073/pnas.1405138111 URL |
[91] |
Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual[J]. Science, 2012, 338(6104): 222-226
doi: 10.1126/science.1224344 pmid: 22936568 |
[92] | Hendy J, Welker F, Demarchi B, et al. A guide to ancient protein studies[J]. Nature Ecology & Evolution, 2018, 2(5): 791-799 |
[93] |
Hollund H, Ariese F, Fernandes R, et al. Testing an alternative high‐throughput tool for investigating bone diagenesis: FTIR in Attenuated Total Reflection (ATR) mode[J]. Archaeometry, 2013, 55(3): 507-532
doi: 10.1111/j.1475-4754.2012.00695.x URL |
[94] |
Pal Chowdhury M, Wogelius R, Manning PL, et al. Collagen deamidation in archaeological bone as an assessment for relative decay rates[J]. Archaeometry, 2019, 61(6): 1382-1398
doi: 10.1111/arcm.12492 |
[95] |
Sponheimer M, Ryder CM, Fewlass H, et al. Saving old bones: A non-destructive method for bone collagen prescreening[J]. Scientific Reports, 2019, 9(1): 13928
doi: 10.1038/s41598-019-50443-2 pmid: 31558827 |
[96] |
Madden O, Chan DMW, Dundon M, et al. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers[J]. Journal of Archaeological Science: Reports, 2018, 18: 596-605
doi: 10.1016/j.jasrep.2017.11.034 URL |
[97] |
Rao HY, Yang YM, Liu JY, et al. Palaeoproteomic analysis of Pleistocene cave hyenas from east Asia[J]. Scientific Reports, 2020, 10: 16674
doi: 10.1038/s41598-020-73542-x pmid: 33028848 |
[98] |
Wilson J, van Doorn NL, Collins MJ. Assessing the extent of bone degradation using glutamine deamidation in collagen[J]. Analytical Chemistry, 2012, 84(21): 9041-9048
doi: 10.1021/ac301333t pmid: 23030643 |
[99] |
Ramsøe A, van Heekeren V, Ponce P, et al. DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity of members of ancient proteomes[J]. Journal of Archaeological Science, 2020, 115: 105080
doi: 10.1016/j.jas.2020.105080 URL |
[100] |
Simpson JP, Fascione M, Bergström E, et al. Ionisation bias undermines the use of matrix-assisted laser desorption/ionisation for estimating peptide deamidation: Synthetic peptide studies demonstrate electrospray ionisation gives more reliable response ratios[J]. Rapid Communications in Mass Spectrometry, 2019, 33(12): 1049-1057
doi: 10.1002/rcm.8441 pmid: 30908787 |
[101] |
Simpson JP, Penkman KEH, Demarchi B, et al. The effects of demineralisation and sampling point variability on the measurement of glutamine deamidation in type I collagen extracted from bone[J]. Journal of Archaeological Science, 2016, 69: 29-38
doi: 10.1016/j.jas.2016.02.002 URL |
[102] |
Schroeter ER, Cleland TP. Glutamine deamidation: An indicator of antiquity, or preservational quality?[J]. Rapid Communications in Mass Spectrometry, 2016, 30(2): 251-255
doi: 10.1002/rcm.7445 pmid: 26689157 |
[103] |
Pal Chowdhury M, Buckley M. Trends in deamidation across archaeological bones, ceramics and dental calculus[J]. Methods, 2022, 200: 67-79
doi: 10.1016/j.ymeth.2021.08.004 URL |
[104] |
Robinson NE, Robinson ZW, Robinson BR, et al. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides[J]. The Journal of Peptide Research, 2004, 63(5): 426-436
doi: 10.1111/j.1399-3011.2004.00151.x URL |
[105] |
Van Doorn NL, Wilson J, Hollund H, et al. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2319-2327
doi: 10.1002/rcm.6351 pmid: 22956324 |
[106] |
Welker F. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment[J]. BMC Evolutionary Biology, 2018, 18(1): 23
doi: 10.1186/s12862-018-1141-1 pmid: 29463217 |
[107] |
Nielsen-Marsh CM, Stegemann C, Hoffmann R, et al. Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS[J]. Journal of Archaeological Science, 2009, 36(2009): 1758-1763
doi: 10.1016/j.jas.2009.04.004 URL |
[108] |
Nielsen-Marsh CM, Richards MP, Hauschka PV, et al. Osteocalcin protein sequences of Neanderthals and modern primates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4409-4413
pmid: 15753298 |
[109] |
Fiddyment S, Holsinger B, Ruzzier C, et al. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting[J]. Proceedings of the National Academy of Sciences, 2015, 112(49): 15066-15071
doi: 10.1073/pnas.1512264112 URL |
[110] |
McGrath K, Rowsell K, Gates St-Pierre C, et al. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: Examples from Iroquoian bone points[J]. Scientific Reports, 2019, 9(1): 11027
doi: 10.1038/s41598-019-47299-x pmid: 31363122 |
[111] |
Ntasi G, Kirby D, Stanzione I, et al. A versatile and user-friendly approach for the analysis of proteins in ancient and historical objects[J]. Journal of Proteomics, 2021, 231: 104039
doi: 10.1016/j.jprot.2020.104039 URL |
[112] |
Zilberstein G, Zilberstein R, Zilberstein S, et al. Proteomics and metabolomics composition of the ink of a letter in a fragment of a Dead Sea scroll from Cave 11 (P1032-Fr0)[J]. Journal of Proteomics, 2021, 249: 104370
doi: 10.1016/j.jprot.2021.104370 URL |
[113] |
Righetti PG, Zilberstein G, Zilberstein S. New baits for fishing in cultural heritage’s Mare Magnum[J]. Journal of Proteomics, 2021, 235: 104113
doi: 10.1016/j.jprot.2021.104113 URL |
[114] |
Wang NH, Brown S, Ditchfield P, et al. Testing the efficacy and comparability of ZooMS protocols on archaeological bone[J]. Journal of Proteomics, 2021, 233: 104078
doi: 10.1016/j.jprot.2020.104078 URL |
[115] |
Lanigan LT, Mackie M, Feine S, et al. Multi-protease analysis of Pleistocene bone proteomes[J]. Journal of Proteomics, 2020, 228: 103889
doi: 10.1016/j.jprot.2020.103889 URL |
[116] |
Gu MX, Buckley M. Semi-supervised machine learning for automated species identification by collagen peptide mass fingerprinting[J]. BMC Bioinformatics, 2018, 19(1): 241
doi: 10.1186/s12859-018-2221-3 pmid: 29940843 |
[117] |
Hickinbotham S, Fiddyment S, Stinson TL, et al. How to get your goat: Automated identification of species from MALDI-ToF spectra[J]. Bioinformatics, 2020, 36(12): 3719-3725
doi: 10.1093/bioinformatics/btaa181 pmid: 32176274 |
[118] |
Tran NH, Zhang X, Xin L, et al. De novo peptide sequencing by deep learning[J]. Proceedings of the National Academy of Sciences, 2017, 114(31): 8247-8252
doi: 10.1073/pnas.1705691114 URL |
[119] |
Tiwary S, Levy R, Gutenbrunner P, et al. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis[J]. Nature Methods, 2019, 16(6): 519-525
doi: 10.1038/s41592-019-0427-6 pmid: 31133761 |
[120] |
Zohora FT, Rahman MZ, Tran NH, et al. DeepIso: A deep learning model for peptide feature detection from LC-MS map[J]. Scientific Reports, 2019, 9(1): 17168
doi: 10.1038/s41598-019-52954-4 pmid: 31748623 |
[121] |
Qiao R, Tran NH, Xin L, et al. Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices[J]. Nature Machine Intelligence, 2021, 3(5): 420-425
doi: 10.1038/s42256-021-00304-3 URL |
[122] |
Zhou WJ, Wei ZH, He SM, et al. pValid 2: A deep learning based validation method for peptide identification in shotgun proteomics with increased discriminating power[J]. Journal of Proteomics, 2022, 251: 104414
doi: 10.1016/j.jprot.2021.104414 URL |
[123] |
Parker GJ, Yip JM, Eerkens JW, et al. Sex estimation using sexually dimorphic amelogenin protein fragments in human enamel[J]. Journal of Archaeological Science, 2019, 101: 169-180
doi: 10.1016/j.jas.2018.08.011 URL |
[124] |
Sawafuji R, Cappellini E, Nagaoka T, et al. Proteomic profiling of archaeological human bone[J]. Royal Society Open Science, 2017, 4(6): 161004
doi: 10.1098/rsos.161004 URL |
[125] | Runge AKW, Hendy J, Richter KK, et al. Palaeoproteomic analyses of dog palaeofaeces reveal a preserved dietary and host digestive proteome[J]. Proceedings of the Royal Society B, 2021, 288(1954): 20210020 |
[126] | 高锐, 张晓鹏, 崔永镇, 等. 蛋白质组学研究进展[J]. 畜牧兽医科技信息, 2007(12): 13-16 |
[127] |
Yang YM, Shevchenko A, Knaust A, et al. Proteomics evidence for kefir dairy in Early Bronze Age China[J]. Journal of Archaeological Science, 2014, 45: 178-186
doi: 10.1016/j.jas.2014.02.005 URL |
[128] |
Ni XJ, Ji Q, Wu WS, et al. Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage[J]. The Innovation, 2021, 2(3): 100130
doi: 10.1016/j.xinn.2021.100130 URL |
[129] |
Gokhman D, Mishol N, de Manuel M, et al. Reconstructing Denisovan anatomy using DNA methylation maps[J]. Cell, 2019, 179(1): 180-192.e110
doi: S0092-8674(19)30954-7 pmid: 31539495 |
[1] | 曾浩然, 刘康康, 罗亚平. 指纹皱纹研究的现状及展望[J]. 人类学学报, 2024, 43(03): 518-528. |
[2] | 周亚威, 王煜, 侯晓刚, 李树云. 山西大同金茂园遗址人群颅骨的形态学[J]. 人类学学报, 2024, 43(02): 233-246. |
[3] | 吴秀杰. 中更新世晚期许家窑人化石的研究进展[J]. 人类学学报, 2024, 43(01): 5-18. |
[4] | 何嘉宁, 冉智宇. 中国史前人类的头骨变形[J]. 人类学学报, 2023, 42(05): 575-589. |
[5] | 孙蕾, 李彦桢, 武志江. 河南郑州站马屯遗址仰韶晚期人骨的颅面形态[J]. 人类学学报, 2023, 42(03): 331-341. |
[6] | 王邦彦, 王久存, 文少卿. 古代强直性脊柱炎的诊断标准及国内研究回顾[J]. 人类学学报, 2023, 42(03): 422-434. |
[7] | 付卫伟, 王晓卫, 杨晨希, 王程亮, 贺树军, 李保国. 非人灵长类早期发育阶段行为偏侧的研究进展[J]. 人类学学报, 2023, 42(03): 435-444. |
[8] | 刘鑫, 张兴华, 宇克莉, 刘艳霞, 包金萍, 郑连斌. 生物电阻抗法测定广西京族的体成分[J]. 人类学学报, 2022, 41(06): 1028-1036. |
[9] | 沙仁高娃, 程慧珍, 韦兰海. 达斡尔语分支早期在蒙古语族中的地位[J]. 人类学学报, 2022, 41(06): 1037-1046. |
[10] | 宋焕庭, 唐玮, 张丽梅, 张忠良, 张嘉宇, 陈世韬. 指纹与年龄相关性的量化分析[J]. 人类学学报, 2022, 41(06): 1047-1057. |
[11] | 邢松. 现代人出现和演化的化石证据[J]. 人类学学报, 2022, 41(06): 1069-1082. |
[12] | 李珊, 王文佳, 宇克莉, 郑连斌. 湖南、湖北、贵州土家族成人的体成分比较[J]. 人类学学报, 2021, 40(02): 272-280. |
[13] | 向小雪, 杜慧敏, 宇克莉, 郑连斌. 门巴族、珞巴族与夏尔巴人身体成分特点及比较[J]. 人类学学报, 2021, 40(01): 109-117. |
[14] | 邢松, 周蜜, 潘雷. 东亚中更新世古人类下颌第二臼齿釉质-齿质连接面三维形状和釉质厚度分布[J]. 人类学学报, 2020, 39(04): 521-531. |
[15] | 魏偏偏. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2020, 39(04): 616-631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||