人类学学报 ›› 2023, Vol. 42 ›› Issue (01): 110-121.doi: 10.16359/j.1000-3193/AAS.2022.0055cstr: 32091.14.j.1000-3193/AAS.2022.0055
收稿日期:
2021-09-03
修回日期:
2021-12-22
出版日期:
2023-02-15
发布日期:
2023-02-20
通讯作者:
罗武宏,副教授,主要从事植物考古学研究。E-mail: 作者简介:
顾纯光,博士研究生,主要从事植物考古学研究。E-mail: 基金资助:
GU Chunguang1(), LUO Wuhong1(), ZHANG Dong2, YANG Yuzhang1
Received:
2021-09-03
Revised:
2021-12-22
Online:
2023-02-15
Published:
2023-02-20
摘要:
本文利用植硅体分析方法,对安徽蚌埠禹会村遗址双墩文化时期44份土壤样品开展植物考古研究,重点关注典型农作物植硅体类型及其形态特征,以及敏感型与固定型植硅体组合特征等。结果显示,禹会村遗址大部分样品中皆发现有水稻特征型植硅体,并未发现粟、黍等旱地作物遗存;水稻扇型及双峰型植硅体形态特征分析显示,水稻遗存为驯化程度较高的粳型稻。以上研究结果表明,该遗址双墩文化时期的农业结构延续了顺山集文化时期以来种植粳型稻为主的传统。此外,通过水稻植硅体高密度样品中敏感型与固定型植硅体含量比值为0.7±0.2推测,该遗址水稻栽培环境属于“高地势-雨水供给”或“低地势-雨水供给”类型。本文研究结果为探讨淮河中游地区新石器时代农业发展、水稻栽培与驯化以及人类适应策略等问题提供了重要科学依据。
中图分类号:
顾纯光, 罗武宏, 张东, 杨玉璋. 安徽禹会村遗址双墩文化时期农业发展的植硅体证据[J]. 人类学学报, 2023, 42(01): 110-121.
GU Chunguang, LUO Wuhong, ZHANG Dong, YANG Yuzhang. Phytolith evidence for the agricultural development during Shuangdun cultural period from the Yuhuicun site, Anhui Province[J]. Acta Anthropologica Sinica, 2023, 42(01): 110-121.
实验编号 Lab No. | 材料Materials | 出土单位Context | 14C date (BP) | 树轮校正后年代Calibrated date (BC cal) | |
---|---|---|---|---|---|
1σ (68.3%) | 2σ (95.4%) | ||||
ZK-9624 | 木炭Charcoal | T6104H061 | 6260±40 | 5306(68.3%) 5210 | 5316 (72.4%) 5204 |
5174 (22.8%) 5069 | |||||
ZK-9629 | 木炭Charcoal | T6204H037 | 6170±30 | 5208 (3.3%) 5202 | 5214 (94.5%) 5028 |
5184 (21.3%) 5146 | 5021 (0.9%) 5015 | ||||
5131 (43.7%) 5054 | |||||
ZK-9632 | 木炭Charcoal | T6312(3)下红烧土堆积 | 6220±40 | 5290 (10.6%) 5268 | 5305 (21.1%) 5240 |
5218 (6.9%) 5206 | 5230 (11.4%) 5196 | ||||
5172 (50.7%) 5072 | 5191 (62.9%) 5046 | ||||
ZK-9633 | 木炭Charcoal | T6412K4 | 6240±30 | 5301 (37.6%) 5252 5224 (12.0%) 5207 5160 (15.9%) 5124 5090 (2.8%) 5083 | 5306 (58.9%) 5204 5175 (36.6%) 5067 |
表1 禹会村遗址木炭的AMS-14C年代数据
Tab.1 AMS-14C data of the charcoal sample of the Yuhuicun site
实验编号 Lab No. | 材料Materials | 出土单位Context | 14C date (BP) | 树轮校正后年代Calibrated date (BC cal) | |
---|---|---|---|---|---|
1σ (68.3%) | 2σ (95.4%) | ||||
ZK-9624 | 木炭Charcoal | T6104H061 | 6260±40 | 5306(68.3%) 5210 | 5316 (72.4%) 5204 |
5174 (22.8%) 5069 | |||||
ZK-9629 | 木炭Charcoal | T6204H037 | 6170±30 | 5208 (3.3%) 5202 | 5214 (94.5%) 5028 |
5184 (21.3%) 5146 | 5021 (0.9%) 5015 | ||||
5131 (43.7%) 5054 | |||||
ZK-9632 | 木炭Charcoal | T6312(3)下红烧土堆积 | 6220±40 | 5290 (10.6%) 5268 | 5305 (21.1%) 5240 |
5218 (6.9%) 5206 | 5230 (11.4%) 5196 | ||||
5172 (50.7%) 5072 | 5191 (62.9%) 5046 | ||||
ZK-9633 | 木炭Charcoal | T6412K4 | 6240±30 | 5301 (37.6%) 5252 5224 (12.0%) 5207 5160 (15.9%) 5124 5090 (2.8%) 5083 | 5306 (58.9%) 5204 5175 (36.6%) 5067 |
图2 禹会村遗址发现的主要植硅体类型及其他微体化石 a-d. 水稻扇型rice bulliform;e. 并排哑铃型dumbbell with scooped ends paralleled arrangement;f-h. 水稻双峰乳突rice double-peaked;i. 多边帽型polyhedrons with conical projection;j. 帽型rondel;k. 扇型cuneiform bulliform;l. 芦苇扇型scutiform bulliform from reed;m. 方型square;n. 长方型rectangle;0. 光滑棒型smooth-elongate;p. 刺棒型elongate-echinate;q. 长鞍型long saddle;r. 短鞍型short saddle;s. 哑铃型bilobate;t. 稗属-β型β-undulated type, ending structures of epidermal long cell from Echinochloa;u. 齿型wavy trapezoid;v. 尖型acicular;w. 导管silicious vessel;x. 海绵骨针断片sponge spicule;y. 硅藻diatom。标尺scale bar:20μm
Fig.2 Main phytolith morphotypes and other microfossils found at the Yuhuicun site
图4 禹会村等遗址水稻扇体鳞纹不小于9的植硅体的占比
Fig.4 Proportion of rice bulliform phytoliths with fish scaly ornmentation lines no less 9 at the Yuhuicun site and other sites
[1] | Bellwood P. First farmers: The Origins of Agricultural Societies[M]. Oxford: Blackwell, 2005, 111-127 |
[2] |
Zuo XX, Lu HY, Jiang LP, et al. Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene[J]. Proceedings of the National Academy of Sciences, 2017, 114(25): 6486-6491
doi: 10.1073/pnas.1704304114 URL |
[3] |
Yang XY, Wan ZW, Perry L, et al. Early millet use in northern China[J]. Proceedings of the National Academy of Sciences, 2012, 109(10): 3726-3730
doi: 10.1073/pnas.1115430109 URL |
[4] | Lu HY, Zhang JP, Liu KB, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago[J]. Proceeding of the National Academy of Sciences of the United States, 2009, 106(18): 7367-7372 |
[5] |
He KY, Lu HY, Zhang JP, et al. Prehistoric evolution of the dualistic structure mixed rice and millet farming in China[J]. The Holocene, 2017, 27(12): 1885-1898
doi: 10.1177/0959683617708455 URL |
[6] |
Yang YZ, Cheng ZJ, Li WY, et al. The emergence, development and regional differences of mixed farming of rice and millet in the upper and middle Huai River Valley, China[J]. Science China: Earth Sciences, 2016, 59(9): 1779-1790
doi: 10.1007/s11430-015-5340-3 URL |
[7] |
Huang R, Zhu C, Guan Y, et al. Impact of Holocene environmental change on temporal-spatial distribution of Neolithic sites in Huaihe River Basin, Anhui Province[J]. Journal of Geographical Science, 2006, 16(2): 199-208
doi: 10.1007/s11442-006-0208-x URL |
[8] | 韩建业. 早期中国-中国文化圈的形成和发展(第一版)[M]. 上海: 上海古籍出版社, 2020, 13-188 |
[9] | 安徽省文物考古研究所, 蚌埠市博物馆. 蚌埠双墩——新石器时代遗址发掘报告[M]. 北京: 科学出版社, 2008, 399-476 |
[10] |
Luo WH, Gu CG, Yang YZ, et al. Phytoliths reveal the earliest interplay of rice and broomcorn millet at the site of Shuangdun (ca. 7.3-6.8 ka BP) in the middle Huai River valley, China[J]. Journal of Archaeological Science, 2019, 102: 26-34
doi: 10.1016/j.jas.2018.12.004 URL |
[11] | 管理, 胡耀武, 王昌燧, 等. 食谱分析方法在家猪起源研究中的应用[J]. 南方文物, 2011, 4: 116-124 |
[12] |
Zhang YN, Zhang D, Yang YL, et al. Pollen and lipid analysis of coprolites from Yuhuicun and Houtieying, China: Implications for human habitats and diets[J]. Journal of Archaeological Science: Reports, 2020, 29: 102135
doi: 10.1016/j.jasrep.2019.102135 URL |
[13] | Piperno DR. Phytoliths: A Comprehensive Guide forArchaeologists and Paleoecologists[M]. New York: AltaMira Press, 2006, 1-248 |
[14] | 吕厚远. 中国史前农业起源演化研究新方法与新进展[J]. 中国科学(地球科学), 2018, 48(2): 181-199 |
[15] | Piperno DR. Phytolith analysis-an archaeological and geological perspective[M]. San Diego: Academic Press, 1988, 1-288 |
[16] |
Rung F, Laws KR, Neve C. The opal phytolith inventory of soils in central Africa-quantities, shapes, classification and spectra[J]. Review of Palaeobotany and Palynology, 1999, 107(1-2): 23-53
doi: 10.1016/S0034-6667(99)00018-4 URL |
[17] |
Luo WH, Li J, Yang YZ, et al. Evidence for crop structure from phytoliths at the Dongzhao site on the Central Plains of China from Xinzhai to Erligang periods[J]. Journal of Archaeological Science: Reports, 2018, 17: 852-859
doi: 10.1016/j.jasrep.2017.12.018 URL |
[18] | 王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1992, 48-124 |
[19] | Lu HY, Wu NQ, Liu B. Recognition of rice phytoliths[A]. In: Pinilla A, Juan-Tresserras J, Machado MJ. The State-of-the-Art Phytolith in soils and Plants[M]. Madrid: Monografias del Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, 1997, 159-174 |
[20] |
Lu HY, Zhang JP, Wu NQ, et al. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum)[J]. PloS One, 2009, 4: e4448
doi: 10.1371/journal.pone.0004448 URL |
[21] |
Ge Y, Lu HY, Zhang JP, et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications[J]. Archaeological and Anthropological Sciences, 2018, 10(1): 61-73
doi: 10.1007/s12520-016-0341-0 URL |
[22] | 赵志军. 中国古代农业的形成过程-浮选出土植物遗存证据[J]. 第四纪研究, 2014, 34(1): 73-84 |
[23] |
Madella M, Jones MK, Echlin P, et al. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones[J]. Quaternary International, 2009, 193: 32-40
doi: 10.1016/j.quaint.2007.06.012 URL |
[24] |
Weisskopf A, Qin L, Ding JL, et al. Phytoliths and rice: From wet to dry and back again in the Neolithic Lower Yangtze[J]. Antiquity, 2015, 89: 1051-1063
doi: 10.15184/aqy.2015.94 URL |
[25] |
Weisskopf A. A wet and dry story: Distinguishing rice and millet arable systems using phytoliths[J]. Vegetation History and Archaeobotany, 2017, 26: 99-109
doi: 10.1007/s00334-016-0593-8 URL |
[26] | Zhao ZJ, Pearsall DM, Benfer RA, et al. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II, finalized method[J]. Economic Botany, 1998, 52(2): 34-45 |
[27] |
Zheng YF, Dong YJ, Matsui A, et al. Molecular genetic basis of determining subspecies of ancient rice using the shape of phytoliths[J]. Journal of Archaeological Science, 2003, 30(10): 1215-1221
doi: 10.1016/S0305-4403(02)00248-0 URL |
[28] |
Huan XJ, Lu HY, Wang C, et al. Bulliform phytolith research in wild and domesticated rice paddy soil in south China[J]. PloS One, 2015, 10(10): e0141255
doi: 10.1371/journal.pone.0141255 URL |
[29] | 郇秀佳, 吕厚远, 王灿, 等. 水稻扇型植硅体野生——驯化特征研究进展[J]. 古生物学报, 2020, 59(4): 467-478 |
[30] | Wang CL, Udatsu T, Fujiwara H. Relationship between motor cell silica body shape and grain morphological / physiological traits for discriminating indica and japonica rice in China[J]. Japanese Journal of Breeding, 1996, 46(1): 61-66 |
[31] | 程至杰, 杨玉璋, 张居中, 等. 安徽淮南小孙岗遗址炭化植物遗存研究[J]. 第四纪研究, 2016, 36(2): 302-311 |
[32] |
Zhang JP, Lu HY, Gu WF, et al. Early mixed farming of millet and rice 7800 years ago in the middle Yellow River Region, China[J]. PloS One, 2012, 7(12): e52146
doi: 10.1371/journal.pone.0052146 URL |
[33] | Wang C, Lu HY, Gu WF, et al. Temporal changes of mixed millet and rice agriculture in Neolithic-Bronze Age Central Plain, China: Archaeobotanical evidence from the Zhuzhai site[J]. The Holocene, 2017, 1-17 |
[34] | 张居中, 程至杰, 蓝万里, 等. 河南舞阳贾湖遗址植物考古研究的新进展[J]. 考古, 2018, 4: 100-110 |
[35] | 程至杰, 齐鸣, 曾令园, 等. 河南项城贾庄和后高老家遗址炭化植物遗存分析-兼论豫东地区仰韶时代的原始农业[J]. 人类学学报, 2020, 39(e): 825-836 |
[36] | 易文文, 魏兴涛, 杨玉璋, 等. 河南舞阳张王庄遗址仰韶早期先民食物的淀粉粒分析[J]. 人类学学报, 2020, 39(5): 411-423 |
[37] |
Jin GY, Wu WW, Zhang KS, et al. 8000-Year old rice remains from the north edge of the Shandong Highlands, East China[J]. Journal of Archaeological Science, 2014, 51: 34-42
doi: 10.1016/j.jas.2013.01.007 URL |
[38] |
Crawford GW, Chen XX, Luan FS, et al. People and plant interaction at the Houli Culture Yuezhuang site in Shandong Province, China[J]. The Holocene, 2016, 26(10): 1594-1604
doi: 10.1177/0959683616650269 URL |
[39] |
Jin GY, Chen S, Li H, et al. The Beixin Culture: archaeobotanical evidence for a population dispersal of Neolithic hunter-gatherer-cultivators in northern China[J]. Antiquity, 2020, 94 (378): 1426-1443
doi: 10.15184/aqy.2020.63 URL |
[40] | 胡飞. 淮河中游及巢湖流域史前文化演化及其农业发展的环境背景研究[D]. 合肥: 中国科学技术大学, 2014, 59-97 |
[41] | 冯晓敏. 不同黍稷品种耐旱性差异及生理生态特性研究[D]. 临汾: 山西师范大学, 2012, 1-61 |
[42] | 韩志平, 张海霞, 张巽, 等. 水分胁迫对黍子幼苗生长和生理特性的影响[J]. 中国农业气象, 2019, 40(8): 502-511 |
[43] | 韩建业. 双墩文化的北上与北辛文化的形成——从济宁张山“北辛文化遗存”论起[J]. 江汉考古, 2012, 2: 46-50 |
[44] |
Wu Y, Jiang LP, Zheng YF, et al. Morphological trend analysis of rice phytolith during the early Neolithic in the Lower Yangtze[J]. Journal of Archaeological Science, 2014, 49: 326-331
doi: 10.1016/j.jas.2014.06.001 URL |
[45] |
Luo WH, Yang YZ, Yao L, et al. Phytolith records of rice agriculture during the Middle Neolithic in the middle reaches of Huai River region, China[J]. Quaternary International, 2016, 426: 133-140
doi: 10.1016/j.quaint.2016.03.010 URL |
[46] | 邱振威, 庄丽娜, 林留根, 等. 江苏泗洪韩井遗址水稻驯化的植硅体证据及相关问题[J]. 东南文化, 2018, 1: 71-80+68-70 |
[47] |
Deng ZH, Qin L, Gao Y, et al. From early domesticated rice of the Middle Yangtze Basin to millet, rice and wheat agriculture: archaeobotanical macro-remains from Baligang, Nanyang Basin, Central China (6700-500 BC)[J]. PloS One, 2015, 10 (10): e0139885
doi: 10.1371/journal.pone.0139885 URL |
[48] |
Zheng YF, Crawford GW, Jiang LP, et al. Rice domestication revealed by reduced shattering of archaeological rice from the lower Yangtze valley[J]. Scientific Reports, 2016, 6: 28136
doi: 10.1038/srep28136 pmid: 27324699 |
[49] |
Luo WH, Yang YZ, Zhuang LN, et al. Phytolith evidence of water management for rice growing and processing between 8500 and 7500 cal years bp in the middle Huai river valley, China[J]. Vegetation History and Archaeobotany, 2021, 30: 243-254
doi: 10.1007/s00334-020-00782-2 URL |
[50] | 金权. 安徽淮北平原第四系[M]. 北京: 地质出版社, 1990, 39-141 |
[1] | 吴妍, 谢光茂, 赵克良, 蒙长旺, 陈冠翰, 汪静怡, 林强. 广西崇左江西岸遗址人类的生存方式[J]. 人类学学报, 2024, 43(03): 380-391. |
[2] | 陶大卫, 邹慧琳. 古代牙结石残留物的研究进展[J]. 人类学学报, 2024, 43(02): 344-354. |
[3] | 李小强. 农业的起源、传播与影响[J]. 人类学学报, 2022, 41(06): 1097-1108. |
[4] | 葛利花, 朱超, 安静平, 王振祥, 靳桂云. 城子崖遗址植硅体反映的生业经济模式[J]. 人类学学报, 2022, 41(05): 883-898. |
[5] | 夏秀敏, 王力之, 陶大卫, 杜伟, 靳松安, 张建, 吴妍. 从文坎沟东地点的植物遗存分析南阳盆地先秦时期的农业活动[J]. 人类学学报, 2022, 41(05): 899-912. |
[6] | 杨凡, 顾万发, 段绮梦, 郑晓蕖, 贾茵, 靳桂云. 河南郑州汪沟遗址出土的植硅体[J]. 人类学学报, 2022, 41(03): 429-438. |
[7] | 原海兵, 顾万发, 魏青利, 吴倩, 丁兰坡, 曹豆豆. 郑州青台遗址新石器时代中晚期人群龋齿的统计与分析[J]. 人类学学报, 2022, 41(02): 226-237. |
[8] | 魏偏偏, 张全超. 内蒙古和林格尔土城子农业人群与林西井沟子游牧人群股骨中部的生物力学对比[J]. 人类学学报, 2022, 41(02): 238-247. |
[9] | 程至杰, 齐鸣, 曾令园, 张居中, 杨玉璋, 李全立. 河南项城贾庄和后高老家遗址炭化植物遗存揭示的仰韶时期的原始农业[J]. 人类学学报, 2022, 41(01): 85-95. |
[10] | 陶大卫, 刘雪玲, 肖艺琦, 陈朝云. 河南鹿台遗址炭化植物遗存揭示的新石器时代晚期的人类生计活动[J]. 人类学学报, 2022, 41(01): 73-84. |
[11] | 刘焕, 宋国定, 李素婷. 河南鄣邓遗址浮选碳化植物遗存分析[J]. 人类学学报, 2021, 40(06): 1063-1071. |
[12] | 陈冠翰, 周新郢, 沈慧, Khasannov Mutalibjon, 马建, 任萌, Annaev Tukhtash, 王建新, 李小强. 中亚河中地区青铜时代以来绿洲农业的演化与文明的交流[J]. 人类学学报, 2021, 40(06): 1108-1120. |
[13] | 刘晓迪, 魏东, 王婷婷, 张昕煜, 胡耀武. 内蒙古东南部战国时期的农业经济及人群融合[J]. 人类学学报, 2021, 40(05): 764-775. |
[14] | 包易格, 李小强, 刘汉斌, 赵克良, John Dodson, 沈慧, 张贵林, 王建, 周新郢. 中国黄土高原北部地区新石器-青铜时代农业结构演变及其对区域生态环境的适应[J]. 人类学学报, 2020, 39(03): 461-472. |
[15] | 罗武宏, 禤华丽, 姚凌, 杨玉璋, 易文文, 阚绪杭, 张居中, 张爱冰. 安徽定远侯家寨遗址二期植物性食物资源利用的淀粉粒证据[J]. 人类学学报, 2020, 39(02): 292-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||