地理信息系统在动物考古学研究中的应用: 以贵州马鞍山遗址出土的动物遗存为例

  • 张乐 ,
  • 张双权 ,
  • 高星
展开
  • 1. 中国科学院脊椎动物演化与人类起源重点实验室, 中国科学院古脊椎动物与古人类研究所,北京 100044
    2. 中国科学院生物演化与环境卓越创新中心, 北京 100044
    3. 中国科学院大学,北京 100049
张乐(1980-),黑龙江牡丹江人,中国科学院古脊椎动物与古人类研究所,副研究员,E-Mail: zhangyue@ivpp.ac.cn

收稿日期: 2019-03-04

  修回日期: 2019-04-23

  网络出版日期: 2020-09-10

基金资助

国家自然科学基金面上项目(41672023);国家自然科学基金面上项目(41772025);中国科学院战略性先导科技专项(B类)(XDB26000000)

Geographic information system in zooarchaeology: A novel technique in analysis of the faunal remains from the Ma’anshan site, Guizhou, China

  • Yue ZHANG ,
  • Shuangquan ZHANG ,
  • Xing GAO
Expand
  • 1. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044
    2. University of Chinese Academy of Sciences, Beijing 100049
    3. University of Chinese Academy of Sciences, Beijing 100049

Received date: 2019-03-04

  Revised date: 2019-04-23

  Online published: 2020-09-10

摘要

目前,地理信息系统(GIS)在多学科领域的融合方面已经发挥了极为明显的作用。但是,在动物考古学研究中,尤其是在东亚地区,这一手段的使用还明显有所欠缺。本文尝试将这一技术手段应用于贵州马鞍山遗址(距今约43~16 kaBP)出土动物遗存的研究之中。在上千件石制品与数十件骨制品之外,马鞍山遗址还出土有大量的动物化石,从而使其成为检验与实践地理信息系统的一个良好媒介。本文以ArcGIS软件包中的空间分析工具为技术依托,重点对遗址出土的大型动物(包括Bubalus sp 和 Megatapirus augustus) 的骨骼单元分布模式进行了更为准确的统计与分析。本项研究表明,相对于传统方法而言,GIS系统在大型动物遗存的量化统计方面具有独特而重要的价值;此外,这一技术手段还有望在第四纪其他学科的研究中得到发挥与应用。

本文引用格式

张乐 , 张双权 , 高星 . 地理信息系统在动物考古学研究中的应用: 以贵州马鞍山遗址出土的动物遗存为例[J]. 人类学学报, 2019 , 38(03) : 407 -418 . DOI: 10.16359/j.cnki.cn11-1963/q.2019.0038

Abstract

Geographic Information System has now found its way into many fields of archaeological research; however, its integration with zooarchaeology is only occasionally practiced, especially in China. In this study, we tentatively adopt this technique in an analysis of the faunal remains from the Ma’anshan site(ca.43-16 kaBP), Guizhou Province of China. Associated with thousands of stone artifacts and dozens of formalized bone tools, this site is exceptional in its excellent preservation of a fairly large bone assemblage. With the assistance of a geoprocessing tool from ArcGIS’s Spatial Analyst extension, skeletal remains of Class III animals(including Bubalus sp. and Megatapirus augustus) from the site are quantified in bulk with maximum precision; meanwhile, patterns in bone element abundance of the two species are visually accentuated. The current study indicates that GIS can be a unique and most potent tool in standardizing and simplifying procedures in analyzing animal bones, especially those of extremely large collections from the Paleolithic sites of China.

参考文献

[1] Gaffney V, Stancic Z. GIS Approaches to Regional Analysis: a Case Study of the Island of Hvar[M]. Ljubljana: Research Institute of the Faculty of Arts & Science, University of Ljubljana, 1991
[2] Ebert D. Applications of archaeological GIS[J]. Canadian Journal Of Archaeology, 2004,28(2):319-341
[3] Scianna A, Villa B. GIS applications in archaeology[J]. Archeologia e Calcolatori, 2012,22:337-363
[4] García-Moreno A, Hutson J, Villaluenga A, et al. Counting sheep without falling asleep: using GIS to calculate the minimum number of skeletal elements(MNE) and other archaeozoological measures at Sch?ningen 13II-4 “Spear Horizon”[A]. In: Giligny F, Djindjian F, Costa L, et al(eds). CAA2014-21st Century Archaeology: Concepts, Methods and Tools. Proceedings of the 42nd Annual Conference on Computer Applications and Quantitative Methods in Archaeology[C]. Oxford: Archaeopress, 2015
[5] Parkinson JA. A GIS image analysis approach to documenting Oldowan hominin carcass acquisition: Evidence from Kanjera South, FLK Zinj, and neotaphonomic models of carnivore bone destruction[D]. Ph.D Dissertation. New York: City University of New York, 2013
[6] Fischer A. Computerised bone templates as the basis of a practical procedure to record and analyse graphical zooarchaeological data[J]. Revista Electrónica de Arqueología PUCP, 2007,2(1):
[7] Parkinson JA, Plummer T, Hartstone-Rose A. Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: An experimental feeding study with large felids[J]. Journal Of Human Evolution, 2015,80:114-134
[8] Herrmann NP, Joanne BD, Jessica CS. Assessment of commingled human remains using a GIS-based and osteological landmark approach[A]. In: Bradley A, John B, eds. Commingled Human Remains: Methods in Recovery, Analysis, and Identification[C]. Amsterdam: Academic Press, 2014, 221-237
[9] Parkinson JA, Plummer TW, Bose R. A GIS-based approach to documenting large canid damage to bones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014,409:57-71
[10] Abe Y, Marean CW, Nilssen PJ, et al. The Analysis of Cutmarks on Archaeofauna: A Review and Critique of Quantification Procedures, and a New Image-Analysis GIS Approach[J]. American Antiquity, 2002,67(4):643-664
[11] Marean CW, Abe Y, Nilssen PJ, et al. Estimating the Minimum Number of Skeletal Elements(MNE) in Zooarchaeology: A Review and a New Image-Analysis GIS Approach[J]. American Antiquity, 2001,66(2):333-348
[12] Nilssen PJ. An actualistic butchery study in South Africa and its implications for reconstructing hominid strategies of carcass acquisition and butchery in the Upper Pleistocene and Plio-Pleistocene[D]. Ph.D Dissertation. Cape Town: University of Cape Town, 2000
[13] Lyman RL. Vertebrate Taphonomy[M]. Cambridge: Cambridge University Press, 1994: 1-552
[14] Grayson DK. Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas[M]. Massachusetts: Academic Press, 1984
[15] Lyman RL. Quantitative Paleozoology[M]. New York: Cambridge University Press, 2008
[16] Marean CW, Domínguez-Rodrigo M, Pickering TR. Skeletal element equifinality in zooarchaeology begins with method: the evolution and status of the "shaft critique"[J]. Journal of Taphonomy, 2004,2(2):69-98
[17] Faith JT, Gordon AD. Skeletal element abundances in archaeofaunal assemblages: economic utility, sample size, and assessment of carcass transport strategies[J]. Journal of Archaeological Science, 2007,34(6):872-882
[18] Faith JT, Domínguez-Rodrigo M, Gordon AD. Long-distance carcass transport at Olduvai Gorge? A quantitative examination of Bed I skeletal element abundances[J]. Journal Of Human Evolution, 2009,56(3):247-256
[19] Zhang S, Li Z, Zhang Y, et al. Skeletal element distributions of the large herbivores from the Lingjing site, Henan Province, China[J]. Science China: Earth Sciences, 2012,55(2):246-253
[20] Faith JT, Thompson JC. Low-survival skeletal elements track attrition, not carcass transport behavior in Quaternary large mammal assemblages[A]. In: Giovas CM, LeFebvre MJ, eds. Zooarchaeology in Practice: Case Studies in Methodology and Interpretation in Archaeofaunal Analysis[C]. Gewerbestrasse: Springer, 2018, 109-126
[21] Lupo KD. Archaeological skeletal part profiles and differential transport: an ethnoarchaeological example from Hadza bone assemblages[J]. Journal Of Anthropological Archaeology, 2001,20(3):361-378
[22] Cleghorn N, Marean C. Distinguishing selective transport and in situ attrition: a critical review of analytical approaches[J]. Journal of Taphonomy, 2004,2:43-67
[23] Cleghorn N, Marean C. The destruction of skeletal elements by carnivores: the growth of a general model for skeletal element destruction and survival in zooarchaeological assemblages[A]. In: Pickering T, Toth N, Schick K, eds. Breathing Life into Fossils: Taphonomic Studies in Honor of CK(Bob) Brain[C]. Indiana: Stone Age Institute Press, 2007, 37-66
[24] Faith JT. Changes in reindeer body part representation at Grotte XVI, Dordogne, France[J]. Journal of Archaeological Science, 2007,34(12):2003-2011
[25] Bunn HT, Bartram LE, Kroll EM. Variability in bone assemblage formation from Hadza hunting, scavenging, and carcass processing[J]. Journal Of Anthropological Archaeology, 1988,7(4):412-457
[26] Bartram LE. Perspectives on skeletal part profiles and utility curves from eastern Kalahari ethnoarchaeology[A]. In: Hudson J, ed. From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains[C]. Carbondale: Center for Archaeological Investigations at Southern Illinois University, 1993, 115-137
[27] Monahan CM. The Hadza Carcass Transport Debate Revisited and its Archaeological Implications[J]. Journal of Archaeological Science, 1998,25(5):405-424
[28] Marean CW, Cleghorn N. Large Mammal Skeletal Element Transport: Applying Foraging Theory in a Complex Taphonomic System[J]. Journal of Taphonomy, 2003,1(1):15-42
[29] Zhang Y, Stiner MC, Dennell R, et al. Zooarchaeological perspectives on the Chinese Early and Late Paleolithic from the Ma’anshan site(Guizhou, South China)[J]. Journal of Archaeological Science, 2010,37(8):2066-2077
[30] Zhang SS. A brief report of the tentative excavation in Ma'anshan Paleolithic site[J]. Acta Anthropologica Sinica, 1988,7(1):64-74(in Chinese with English abstract)
[31] Long FX. Analysis of bone fragments from Ma’anshan site, Guizhou[J]. Acta Anthropologica Sinica, 1992,11(3):216-229(in Chinese with English abstract)
[32] Zhang S, d'Errico F, Backwell LR, et al. Ma'anshan cave and the origin of bone tool technology in China[J]. Journal of Archaeological Science, 2016,65:57-69
[33] Zhang Y, Wang CX, Zhang SQ, et al. A zooarchaeological study of bone assemblages from the Ma'anshan Paleolithic site[J]. Science China: Earth Sciences, 2010,53(3):395-402
[34] Brain CK. The Hunters or the Hunted? An Introduction to African Cave Taphonomy[M]: University of Chicago Press, 1981: 1-384
[35] ESRI. ArcGIS Desktop Help 10.3. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/equal-to-frequency.htm. Accessed 2018-03-15
[36] Binford LR. Nunamiut Ethnoarchaeology[M]. New York: Academic Press, 1978: 1-509
[37] Perkins JD, Daly P. A hunters' village in Neolithic Turkey[J]. Scientific American, 1968,219(5):97-106
[38] Lyman RL. Bone density and differential survivorship of fossil classes[J]. Journal Of Anthropological Archaeology, 1984,3(4):259-299
[39] Lam YM, Chen Xb, Pearson OM. Intertaxonomic varibility in patterns of bone density and the differential representation of Bovid, Cervid, and Equid elements in the Archaeological record[J]. American Antiquity, 1999,64(2):343-362
[40] Klein RG. The mammalian fauna of the Klasies River mouth sites, southern Cape Province, South Africa[J]. South African Archaeological Bulletin, 1976,31(123/124):75-98
[41] Yellen JE. Cultural patterning in faunal remains: evidence from the Kung Bushmen[A]. In: Ingersoll D, Yellen J, Macdonald W, eds. Experimental archeology[C]. New York: Columbia University Press, 1977, 271-331
[42] O'Connell JF Hawkes K Blurton JN. Reanalysis of large mammal body part transport among the Hadza[J]. Journal of Archaeological Science, 1990,17(3):301-316
[43] Abe Y. Hunting and butchery patterns of the Evenki in Northern Transbaikalia, Russia[D]. PhD Dissertation. New York: Stony Brook University, 2005
[44] Schoville BJ, Otárola-Castillo E. A model of hunter-gatherer skeletal element transport: The effect of prey body size, carriers, and distance[J]. Journal Of Human Evolution, 2014,73:1-14
文章导航

/