研究论文

三维几何形态测量方法在石制品分析中的应用

  • 雷蕾 ,
  • 贺乐天 ,
  • 李大伟 ,
  • 李浩
展开
  • 1.贵州大学历史与民族文化学院,贵阳 550025
    2.兰州大学历史文化学院考古与博物馆学研究所,兰州 730000
    3.广西民族大学科技史与科技文化研究院
    4.中国科学院脊椎动物与人类起源重点实验室,中国科学院古脊椎动物与古人类研究所,北京 100044
    5.中国科学院生物演化与环境卓越创新中心,北京 100044
雷蕾,讲师,主要从事旧石器时代考古研究。E-mail: leileiivpp@163.com

收稿日期: 2021-02-01

  修回日期: 2021-05-15

  网络出版日期: 2021-12-17

基金资助

中国科学院战略性先导科技专项(XDB26000000);中国科学院战略性先导科技专项(XDA19050102);中国科学院百人计划;贵州大学引进人才科研基金资助(贵大人基合字[2020]036号);广西自然科学基金(2021JJA150004)

The application of 3D geometric morphometric approach on the study of stone artifacts

  • Lei LEI ,
  • Letian HE ,
  • Dawei LI ,
  • Hao LI
Expand
  • 1. College of History and Ethnic Culture, Guizhou 550025
    2. School of History and Culture, Lanzhou University, Lanzhou 730000
    3. Institute for History and Culture of Science & Technology, Guangxi University for Nationalities, Nanning 530006
    4. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044
    5. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044

Received date: 2021-02-01

  Revised date: 2021-05-15

  Online published: 2021-12-17

摘要

几何形态测量方法是生物学研究中用于形态特征分析和形态比较研究的一种常用方法。其核心思想是利用空间坐标点获取研究对象的形态数据,再通过坐标数据的多元统计分析,定量探讨研究对象的形态特征及影响其形态变异的因素。近年来,随着三维扫描技术的广泛应用以及对于石制品形态特征量化分析要求的提高,基于三维模型的几何形态测量方法开始出现在相关的旧石器考古研究中。本文首先对三维几何形态测量分析方法及其在石制品研究中的应用情况进行介绍,随后具体阐述了该方法的分析流程。为便于国内学者更好地了解这一方法,本文进一步以广西百色盆地南坡山遗址发现的手斧为例,利用三维几何形态测量方法对这些手斧的几何形态特征进行了初步探讨。三维几何形态测量方法为石制品形态研究提供了新思路和新视角,有望成为今后中国旧石器考古研究中一个重要的发展方向。

本文引用格式

雷蕾 , 贺乐天 , 李大伟 , 李浩 . 三维几何形态测量方法在石制品分析中的应用[J]. 人类学学报, 2021 , 40(06) : 970 -980 . DOI: 10.16359/j.1000-3193/AAS.2021.0076

Abstract

Geometric morphometric approach has been widely used in the morphological analysis and relevant comparative studies in biological science. The geometric morphometric study aims to use landmarks and their corresponding coordinates to reveal the geomorphological characteristics of artefacts and to explore the factors that could potentially influence the morphological variabilities. Accompanying with the wide application of 3D scanning technology and the increased requirements to obtain the quantitative and high-resolution morphological information of stone artefacts, the 3D geometric morphometric approach has been gradually adopted in the Paleolithic Archaeology. This paper presents a brief introduction of the 3D geometric morphometric method and its application in lithic analyses. Importantly, we also provide a relatively detailed description of analytical procedures of the 3D geometric morphometric approach. Finally, in order to facilitate our understanding of this innovative analytical method, we provide a case study of handaxe assemblage from the Nanposhan site in the Baise Basin, South China. Overall, the 3D geometric morphometric approach is providing new perspectives and insights into the old stone artefacts, and it will likely become an important research branch in the Chinese Paleolithic Archaeology in future.

参考文献

[1] Bretzke K, Conard NJ. Evaluating morphological variability in lithic assemblages using 3D models of stone artifacts[J]. Journal of Archaeological Science, 2012, 39(12):3741-3749
[2] Archer W, Braun DR. Variability in bifacial technology at Elandsfontein, Western cape, South Africa: a geometric morphometric approach[J]. Journal of Archaeological Science, 2010, 37(1):201-209
[3] Grosman L, Smikt O, Smilansky U. On the application of 3-D scanning technology for the documentation and typology of lithic artifacts[J]. Journal of Archaeological Science, 2008, 35(12):3101-3110
[4] Dibble HL, Rezek Z. Introducing a new experimental design for controlled studies of flake formation: results for exterior platform angle, platform depth, angle of blow, velocity, and force[J]. Journal of Archaeological Science, 2009, 36(9):1945-1954
[5] Lin SC, Rezek Z, Braun D, et al. On the utility and economization of unretouched flakes: the effects of exterior platform angle and platform depth[J]. American Antiquity, 2013: 724-745
[6] Stout D. Stone toolmaking and the evolution of human culture and cognition[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 2011, 366(1567):1050-1059
[7] Bordes F. Typologie du Paléolithique Ancien et Moyen[M]. Bordeaux: Publications de l’ Institut de Préhistoire de l’ Universit de Bordeaux, Mémoire No.1, 1961
[8] Roe DA. The British Lower and Middle Palaeolithic: some problems, methods of study and preliminary results[J]. Proceedings of the Prehistoric Society. 1964, 30:245-267
[9] Roe DA. British Lower and Middle Paleolithic handaxe groups[J]. Proceedings of the Prehistoric Society, 1969, 34:1-82
[10] Roe DA. A metrical analysis of selected sets of handaxes and cleavers from Olduvai Gorge[A]. In: Leakey MD, Roe DA (Eds.). Olduvai Gorge, Vol 5. Excavations in Beds III, IV and the Masek Beds, 1968-1971[C]. Cambridge: Cambridge University Press, 1994
[11] Isasa GL. Olorgesailie: Archaeological studies ofa Middle PLeisocene Lake Basin in Kenya[J]. Canadian Journal of African Studies, 1978, 12(1):308
[12] Lycett SJ. Is the Soanian techno-complex a Mode 1 or Mode 3 phenomenon? A morphometric assessment[J]. Journal of Archaeological Science, 2007, 34(9):1434-1440
[13] Lycett SJ, von Cramon-Taubadel N, Foley RA. A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: a description, test and empirical examples of application[J]. Journal of Archaeological Science, 2006, 33(6):847-861
[14] Lycett SJ, von Cramon-Taubadel N. A 3D morphometric analysis of surface geometry in Levallois cores: patterns of stability and variability across regions and their implications[J]. Journal of Archaeological Science, 2013, 40(3):1508-1517
[15] Davis LG, Bean DW, Nyers AJ, et al. GLimr: A GIS-based method for the geometric morphometric analysis of artifacts[J]. Lithic Technology, 2015, 40(3):199-217
[16] Lycett SJ. Quantifying transitions: morphometric approaches to Palaeolithic variability and technological change[A]. In: Camps M, Chauhan P (Eds.). Sourcebook of Paleolithic Transitions[C]. New York: Springer, 2009, 79-92
[17] Shipton C, Clarkson C. Handaxe reduction and its influence on shape: an experimental test and archaeological case study[J]. Journal of Archaeological Science: Reports, 2015, 3:408-419
[18] Wang W, Lycett SJ, von Cramon-Taubadel N, et al. Comparison of handaxes from Bose Basin (China) and the western Acheulean indicates convergence of form, not cognitive differences[J]. PloS One, 2012, 7(4):e35804
[19] Presnyakova D, Braun DR, Conard NJ, et al. Site fragmentation, hominin mobility and LCT variability reflected in the early Acheulean record of the Okote Member, at Koobi Fora, Kenya[J]. Journal of human evolution, 2018, 125:159-180
[20] Archer W, Gunz P, van Niekerk KL , et al. Diachronic change within the still bay at Blombos cave, South Africa[J]. PLoS One, 2015, 10(7):e0132428
[21] Archer W, Pop CM, Rezek Z, et al. A geometric morphometric relationship predicts stone flake shape and size variability[J]. Archaeological and Anthropological Sciences, 2018, 10(8):1991-2003
[22] Archer W, Djakovic I, Brenet M, et al. Quantifying differences in hominin flaking technologies with 3D shape analysis[J]. Journal of Human Evolution, 2021, 150:102912
[23] Herzlinger G, Goren-Inbar N, Grosman L. A new method for 3D geometric morphometric shape analysis: The case study of handaxe knapping skill[J]. Journal of Archaeological Science: Reports, 2017, 14:163-173
[24] Herzlinger G, Grosman L. AGMT3-D: A software for 3-D landmarks-based geometric morphometric shape analysis of archaeological artifacts[J]. PLoS One, 2018, 13(11):e0207890
[25] Li H, Lei L, Li DW, et al. Characterizing the shape of Large Cutting Tools from the Baise Basin (South China) using a 3D geometric morphometric approach[J]. Journal of Archaeological Science: Reports, 2021, 36:102820
[26] Herzlinger G, Goren-Inbar N. Beyond a Cutting Edge: a Morpho-technological Analysis of Acheulian Handaxes and Cleavers from Gesher Benot Ya ‘aqov, Israel[J]. Journal of Paleolithic Archaeology, 2020, 3(1):33-58
[27] Herzlinger G, Goren-Inbar N. Do a few tools necessarily mean a few people? A techno-morphological approach to the question of group size at Gesher Benot Ya’aqov, Israel[J]. Journal of human evolution, 2019, 128:45-58
[28] Shipton C, White M. Handaxe types, colonization waves, and social norms in the British Acheulean[J]. Journal of Archaeological Science: Reports, 2020, 31:102352
[29] Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’[J]. Italian Journal of Zoology, 2004, 71(1):5-16
[30] Rohlf FJ, Marcus LF. A revolution morphometrics[J]. Trends in ecology and evolution, 1993, 8(4):129-132
[31] Kendall DG. The diffusion of shape[J]. Advances in applied probability, 1977, 9(3):428-430
[32] 陈新军, 方舟, 陈洋洋, 等. 几何形态测量学在水生生物中的应用[M]. 北京: 科学出版社, 2017
[33] 白明, 杨星科, 李静, 等. 几何形态学:关于形态定量比较的科学计算工具[J]. 科学通报, 2014, 59(10):887-894
[34] 白明, 杨星科. 几何形态测量法在生物形态学研究中的应用[J]. 昆虫知识, 2007, 44(1):143-147
[35] 陈新军, 方舟, 苏杭, 等. 几何形态测量学在水生动物中的应用及其进展[J]. 水产学报, 2013, 37(12):1873-1885
[36] 邢松, 周蜜, 刘武. 中国人牙齿形态测量分析——近代人群上、下颌前臼齿齿冠轮廓形状及其变异[J]. 人类学学报, 2010, 29(2):132-149
[37] 邢松. 周口店直立人牙齿形态特征变异[D]. 北京:中国科学院大学, 2012
[38] Bookstein FL. Morphometric tools for landmark data: geometry and biology[M]. Cambridge: Cambridge University Press, 1997
[39] Xing S, Gibbon V, Clarke R, et al. Geometric morphometric analyses of orbit shape in Asian, African, and European human populations[J]. Anthropological Science, 2013, 121(1):1-11
[40] Klingenberg CP, McIntyre GS. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods[J]. Evolution, 1998, 52(5):1363-1375
[41] Klingenberg CP. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications[J]. Symmetry, 2015, 7(2):843-934
[42] 魏偏偏. 周口店田园洞古人类股骨形态功能分析[D]. 北京:中国科学院大学, 2015
[43] Zelditch ML, Swiderski DL, Sheets HD, et al. Geometric morphometrics for biologists: a primer[M]. San Diego: Elsevier Academic Press, 2012
[44] Slice DE. Geometric morphometrics[J]. Annual Review of Anthropology, 2007, 36(1):261-281
[45] Adams DC, Otárola‐Castillo E, Paradis E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013, 4:393-399
[46] 贺乐天. 甘青地区全新世中晚期(5300-1500 BP)人群历史重建——颅骨表型数量形状及非连续性特征分析[D]. 北京:中国科学院大学, 2019
[47] 白明, 杨星科. 三维几何形态学概述及其在昆虫学中的应用[J]. 昆虫学报, 2014, 57(9):1105-1111
[48] Gunz P, Mitteroecker P. Semilandmarks: a method for quantifying curves and surfaces[J]. Hystrix, the Italian journal of mammalogy, 2013, 24(1):103-109
[49] Mitteroecker P, Gunz P. Advances in geometric morphometrics[J]. Evolutionary Biology, 2009, 36(2):235-247
[50] 潘鹏亮, 沈佐锐, 杨红珍, 等. 三种绢蝶翅脉数字化特征的提取及初步分析[J]. 动物分类学报, 2008, 33(3):566-571
[51] 冯波, 程罗妹. 几何形态学方法区分短吻鲾地方种群的研究[J]. 上海海洋大学学报, 2011, 20(5):677-681
[52] 杨红珍, 蔡小娜, 李湘涛, 等. 几何形态计量学在昆虫自动鉴定中的应用与展望[J]. 四川动物, 2013 (3):464-469
[53] 刘哲. 生物医学图像的几何形态测量研究[D]. 北京:中国协和医科大学, 2010
[54] 薛文东, 戴克戎, 汤亭亭, 等. 中国人股骨近端几何形态参数的测量和分类[J]. 生物医学工程学杂志, 2002, 19(1):84-88
[55] Ball R, Shu C, Xi PC, et al. A comparison between Chinese and Caucasian head shapes[J]. Applied ergonomics, 2010, 41(6):832-839
[56] Okumura M, Araujo AGM. Archaeology, biology, and borrowing: A critical examination of Geometric Morphometrics in Archaeology[J]. Journal of Archaeological Science, 2019, 101:149-158
文章导航

/