研究论文

泥河湾盆地马圈沟遗址哺乳动物破碎长骨反映的古人类行为

  • 王晓敏 ,
  • 刘连强 ,
  • 陈国鹏 ,
  • 李锋 ,
  • 谢飞 ,
  • 高星
展开
  • 1.中国社会科学院考古研究所,北京 100710
    2.河北省文物考古研究院,石家庄 050031
    3.牛津大学考古学系,英国,牛津 OX13LZ
    4.北京大学考古文博学院,北京 100871
    5.中国科学院脊椎动物演化与人类起源重点实验室,中国科学院古脊椎动物与古人类研究所,北京 100044
    6.中国科学院大学,北京 100049
王晓敏,副研究员,主要从事旧石器时代考古遗址的埋藏学和动物考古学研究。E-mail: paleowangxm@foxmail.com

收稿日期: 2023-05-31

  网络出版日期: 2024-02-06

基金资助

国家重点研发计划(2020YFC1521500);国家自然科学基金青年项目(41802022)

Behavior of the ancient humans as reflected by the broken long bones of mammals from the Majuangou site, Nihewan Basin

  • Xiaomin WANG ,
  • Lianqiang LIU ,
  • Guopeng CHEN ,
  • Feng LI ,
  • Fei XIE ,
  • Xing GAO
Expand
  • 1. Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710
    2. Hebei Provincial Institute of Cultural Relics, Shijiazhuang 050031
    3. Institute of Archaeology, University of Oxford, Oxford UK OX1 3LZ
    4. The School of Archaeology and Museology, Peking University, Beijing 100871
    5. Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710
    6. University of Chinese Academy of Sciences, Beijing 100049

Received date: 2023-05-31

  Online published: 2024-02-06

摘要

马圈沟遗址是东北亚地区年代最古老的旧石器时代遗址之一,出土了大量石制品及动物化石,现已发现并确认距今1.76~1.26 Ma之间的17个不同阶段的文化层,为探讨早更新世东北亚地区最早人类的扩散与生存适应方式提供了关键材料。本文以距今1.66 Ma的马圈沟遗址第3文化层2001~2003年出土的大、中型哺乳动物长骨为研究材料,开展骨骼破碎方式的分析。研究表明,这批长骨化石以残段及残片为主,通过对它们的断口形态和质地,特别是破裂断口的角度进行测量、统计以及分析,发现大多数长骨是在新鲜状况下破裂的,而古人类很可能是敲碎骨骼和取食骨髓的主体;食肉类动物也造成了一些骨骼的破裂,但应该发生在古人类的行为之后。本文是首次对中国北方早更新世遗址出土动物骨骼的破碎方式进行的系统分析,为讨论早更新世古人类与食肉类的互动关系提供了新的线索。

本文引用格式

王晓敏 , 刘连强 , 陈国鹏 , 李锋 , 谢飞 , 高星 . 泥河湾盆地马圈沟遗址哺乳动物破碎长骨反映的古人类行为[J]. 人类学学报, 2024 , 43(01) : 91 -105 . DOI: 10.16359/j.1000-3193/AAS.2023.0042

Abstract

The Early Pleistocene site of Majuangou, one of the earliest hominin sites in northeast Asia is dated to 1.76-1.26 Ma BP. Excavations revealed 17 stratigraphic layers showing evidence of hominin activities including lithic artefacts and animal fossils, offering compelling evidence of the earliest human subsistence in high latitude regions of northeast Asia. Among them, Layer 3 (MJG-3) was estimated to be 1.66 Ma BP. The present study focuses on long bone fragments of large and medium-sized mammals recovered from MJG-3 between 2001-2003, with the goal of understanding taphonomic process of faunal assemblages. Breakage analysis, including fragmentation, weathering stages, long bone breakage patterns are reported. It shows that most long bones have green fractures. The recorded fracture angles provide data about initial consumption of bone marrow. We argue that hominins had primary access to carcasses by means of marrow extraction, while carnivores scavenged the leftovers. The systematic analysis of breaking patterns of long bones are applied here, offering evidence of hominin-carnivore interaction in Early Pleistocene in northeast Asia.

参考文献

[1] Ardrey R. The Hunting Hypothesis[M]. New York: Bantam, 1976
[2] Binford LR. Bones, Ancient Men and Modern Myths[M]. Orlando: Academic Press, 1981
[3] Blumenschine RJ. An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages[J]. Journal of Archaeological Science, 1988, 15(5): 483-502
[4] Bunn HT. Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge[J]. Nature, 1981, 291(5816): 574-577
[5] Domínguez-Rodrigo M, Barba R. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified[J]. Journal of Human Evolution, 2006, 50(2): 170-194
[6] Zhu RX, Potts R, Xie F, et al. New evidence on the earliest human presence at high northern latitudes in northeast Asia[J]. Nature, 2004, 431(7008): 559-562
[7] Zhu Z, Dennell R, Huang W, et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago[J]. Nature, 2018, 559(7715): 608-612
[8] Shen G, Wang Y, Tu H, et al. Isochron 26Al/10Be burial dating of Xihoudu: Evidence for the earliest human settlement in northern China[J]. L'anthropologie, 2020, 124(5): 102790
[9] Ferring R, Oms O, Agustí J, et al. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85-1.78 Ma[J]. Proceedings of the National Academy of Sciences, 2011, 108(26): 10432-10436
[10] Gabunia L, Vekua A, Lordkipanidze D. The environmental contexts of early human occupation of Georgia (Transcaucasia)[J]. Journal of Human Evolution, 2000, 38(6): 785-802
[11] Zhu RX, Hoffman KA, Potts R, et al. Earliest presence of humans in northeast Asia[J]. Nature, 2001, 413(6854): 413-417
[12] Deng C, Wei Q, Zhu R, et al. Magnetostratigraphic age of the Xiantai Paleolithic site in the Nihewan Basin and implications for early human colonization of Northeast Asia[J]. Earth and Planetary Science Letters, 2006, 244(1-2): 336-348
[13] Ao H, Deng C, Dekkers MJ, et al. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China)[J]. Earth and Planetary Science Letters, 2010, 292(1-2): 191-200
[14] Wei G, Hu S, Yu K, et al. New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths[J]. Science China Earth Sciences, 2010, 53(7): 956-963
[15] 谢飞, 李珺, 刘连强. 泥河湾旧石器文化[M]. 石家庄: 花山文艺出版社, 2006
[16] Dennell RW. The Nihewan Basin of North China in the Early Pleistocene: continuous and flourishing, or discontinuous, infrequent and ephemeral occupation?[J]. Quaternary International, 2013, 295: 223-236
[17] Schick K, Toth N, Qi W, et al. Archaeological perspectives in the Nihewan basin, China[J]. Journal of Human Evolution, 1991, 21(1): 13-26
[18] Peterson CE, Shen C, Chen C, et al. Taphonomy of an early Pleistocene archaeofauna from Xiaochangliang, Nihewan Basin, Northern China[A]. In: Shen C, Keates S(Eds). Current Research in Chinese Pleistocene Archaeology[C]. Oxford: Archaeopress, 2003: 83-98
[19] Keates SG. Evidence for the earliest Pleistocene hominid activity in the Nihewan Basin of northern China[J]. Quaternary International, 2010, 223: 408-417
[20] 蔡保全, 李强, 郑绍华. 泥河湾盆地马圈沟遗址化石哺乳动物及年代讨论[J]. 人类学学报, 2008, 27(2): 129-142
[21] Liu C, Yin G, Deng C, et al. ESR dating of the Majuangou and Banshan Paleolithic sites in the Nihewan Basin, North China[J]. Journal of Human Evolution, 2014, 73: 58-63
[22] Duval M. Comments on “ESR dating of the Majuangou and Banshan Paleolithic sites in the Nihewan Basin, North China” by Liu et al. (2014)[J]. Journal of Human Evolution, 2016, 90: 198-202
[23] Yang SX, Deng CL, Zhu RX, et al. The Paleolithic in the Nihewan Basin, China: Evolutionary history of an Early to Late Pleistocene record in Eastern Asia[J]. Evolutionary Anthropology: Issues, News, and Reviews, 2020, 29(3): 125-142
[24] 汤英俊, 李毅, 陈万勇. 河北阳原小长梁遗址哺乳类化石及其时代[J]. 古脊椎动物学报, 1995, 1: 74-83
[25] Costamagno S, Rigaud JP. L’exploitation de la graisse au Paléolithique[A]. In: Costamagno S(Ed). Histoire de l’alimentation humaine: entre choix et contraintes (édition électronique)[C]. París: CTHS, 2014, 134-152
[26] Dominguez-Rodrigo M, Raynepickering T, Semaw S, et al. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world's oldest stone tools[J]. Journal of Human Evolution, 2005, 48(2): 109-121
[27] Gifford-Gonzalez D. An Introduction to Zooarchaeology[M]. Springer Switzerland, 2018
[28] Norton CJ, 张双权, 张乐, 等. 上/更新世动物群中人类与食肉动物“印记”的识别[J]. 人类学学报, 2007, 26(2): 183-192
[29] Domínguez-Rodrigo M, Yravedra J. Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis[J]. Journal of Archaeological Science, 2009, 36(3): 884-894
[30] Domínguez-Rodrigo M, Saladié P, Cáceres I, et al. Use and abuse of cut mark analyses: The Rorschach effect[J]. Journal of Archaeological Science, 2017, 86: 14-23
[31] Galán AB, Rodríguez M, De Juana S, et al. A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages[J]. Journal of Archaeological Science, 2009, 36(3): 776-784
[32] Pickering TR, Domínguez Rodrigo M, Egeland CP, et al. The contribution of limb bone fracture patterns to reconstructing early hominid behaviour at Swartkrans Cave (South Africa): archaeological application of a new analytical method[J]. International Journal of Osteoarchaeology, 2005, 15(4): 247-260
[33] Coil R, Tappen M, Yezzi-Woodley K. New analytical methods for comparing bone fracture angles: A controlled study of hammerstone and hyena (Crocuta crocuta) long bone breakage[J]. Archaeometry, 2017, 59(5): 900-917
[34] 张双权. 河南许昌灵井动物群的埋藏学研究[D]. 北京: 中国科学院研究生院, 2009
[35] 张乐. 马鞍山遗址古人类行为的动物考古学研究[D]. 北京: 中国科学院研究生院, 2008
[36] 张双权, 彭菲, 张乐, 等. 宁夏鸽子山遗址第10地点出土动物骨骼的埋藏学初步观察[J]. 人类学学报, 2019, 38(2): 232-244
[37] Wang XM, Xie F, Mei HJ, et al. Intensive exploitation of animal resources during Deglacial times in North China: a case study from the Yujiagou site[J]. Archaeological and Anthropological Sciences, 2019, 11: 4983-5000
[38] Lyman RL. Vertebrate Taphonomy[M]. Cambridge: Cambridge University Press, 1994
[39] Shipman P. Life history of a fossil: an introduction to taphonomy and paleoecology[M]. Cambridge: Harvard University Press, 1981
[40] Villa P, Mahieu E. Breakage patterns of human long bones[J]. Journal of Human Evolution, 1991, 21(1): 27-48
[41] White TD. Prehistoric cannibalism at Mancos 5MTUMR-2346[M]. Princeton: Princeton University Press, 1992
[42] Outram AK. The identification and palaeoeconomic context of prehistoric bone marrow and grease exploitation[D]. Durham: University of Durham, 1998
[43] Outram AK. A new approach to identifying bone marrow and grease exploitation: why the “indeterminate” fragments should not be ignored[J]. Journal of Archaeological Science, 2001, 28(4): 401-410
[44] Sala M, Arsuaga JL, Martínez I, Gracia-Tellez A. Breakage patterns in Sima de los Huesos (Atapuerca, Spain) hominin sample[J]. Journal of Archaeological Science, 2015, 55: 113-121
[45] Gifford-Gonzalez DP. Ethnographic analogues for interpreting modified bones: some cases from East Africa[A]. In: Bonnichsen R, Sorg M(Eds). Bone Modification, Center for the Study of the First Americans[C]. Orono: Maine, 1989, 179-246
[46] Haynes G. Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages[J]. American Antiquity, 1983, 48(1): 102-114
[47] Dart RA. The Osteodontokeratic culture of Australopithecus Promethius: The primary and persistent role of the Osteodontokeratic element in lithic cultures[J]. Transvaal Museum Memoirs, 1957, 10(1): 10-20
[48] Dart RA. Further light on australopithecine humeral and femoral weapons[J]. American Journal of Physical Anthropology, 1959, 17(2): 87-93
[49] Bonnichsen R. Bone modification, Center for the Study of the First Americans[M]. Orono: University of Maine, 1989
[50] Haynes G. Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages[J]. American Antiquity, 1983, 48(1): 102-114
[51] Johnson E. Current developments in bone technology[A]. In: Schiffer MB(Ed). Advances in archaeological method and theory[C]. New York: Elsevier, 1985: 157-235
[52] Capaldo SD, Blumenschine RJ. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones[J]. American Antiquity, 1994, 59(4): 724-748
[53] Alcántara-García V, Barba Egido R, Barral Del Pino JM, et al. Determinación de procesos de fractura sobre huesos: un sistema de análisis de los ángulos de los planos de fracturación como discriminador de agentes bióticos[J]. Trabajos De Prehistoria, 2006, 61(1): 25-38
[54] De Juana S, Domínguez Rodrigo M. Testing analogical taphonomic signatures in bone breaking: a comparison between hammerstone-broken equid and bovid bones[J]. Archaeometry, 2011, 53(5): 996-1011
[55] Brain CK. The Hunters or the Hunted: An Introduction to African Cave Taphonomy[M]. Chicago: University of Chicago Press, 1981
[56] Behrensmeyer AK. Taphonomic and ecologic information from bone weathering[J]. Paleobiology, 1978, 4(2): 150-162
[57] Domínguez-Rodrigo M, Yravedra J, Organista E, et al. A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania)[J]. Journal of Archaeological Science, 2015, 59: 35-53
[58] Moclán A, Domínguez-Rodrigo M, Yravedra J. Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms[J]. Archaeological and Anthropological Sciences, 2019, 11(9): 4663-4680
文章导航

/