Acta Anthropologica Sinica ›› 2021, Vol. 40 ›› Issue (03): 513-525.doi: 10.16359/j.1000-3193/AAS.2021.0042
Previous Articles Next Articles
HUANG Chao1,2,3(), ZHANG Shuangquan1,2,3()
Received:
2020-12-18
Revised:
2021-02-18
Online:
2021-06-15
Published:
2021-06-24
Contact:
ZHANG Shuangquan
E-mail:huangchao@ivpp.ac.cn;zhangshuangquan@ivpp.ac.cn
CLC Number:
HUANG Chao, ZHANG Shuangquan. Preliminary application of the X-rays diffraction technique in experimental study of burnt bones[J]. Acta Anthropologica Sinica, 2021, 40(03): 513-525.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2021.0042
骨骼状态 Sample status 加热温度 Temperature | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
300 °C | 0.13 | 0.14 | 0.25 |
350 °C | 0.13 | 0.15 | 0.19 |
400 °C | 0.21 | 0.11 | 0.17 |
450 °C | 0.14 | 0.1 | 0.21 |
500 °C | 0.23 | 0.17 | 0.14 |
550 °C | 0.22 | 0.18 | 0.31 |
600 °C | 0.45 | 0.38 | 0.41 |
650 °C | 1.19 | 0.76 | 0.52 |
700 °C | 1.27 | 1.2 | 0.96 |
750 °C | 1.26 | 1.21 | 0.87 |
800 °C | 1.47 | 1.33 | 1.2 |
Tab.1 The crystallinity index of the samples heated for 120 min
骨骼状态 Sample status 加热温度 Temperature | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
300 °C | 0.13 | 0.14 | 0.25 |
350 °C | 0.13 | 0.15 | 0.19 |
400 °C | 0.21 | 0.11 | 0.17 |
450 °C | 0.14 | 0.1 | 0.21 |
500 °C | 0.23 | 0.17 | 0.14 |
550 °C | 0.22 | 0.18 | 0.31 |
600 °C | 0.45 | 0.38 | 0.41 |
650 °C | 1.19 | 0.76 | 0.52 |
700 °C | 1.27 | 1.2 | 0.96 |
750 °C | 1.26 | 1.21 | 0.87 |
800 °C | 1.47 | 1.33 | 1.2 |
骨骼状态 Sample Status 加热时间 Time | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
30 min | 0.12 | 0.13 | 0.31 |
60 min | 0.14 | 0.14 | 0.21 |
90 min | 0.11 | 0.13 | 0.36 |
120 min | 0.13 | 0.14 | 0.25 |
150 min | 0.14 | 0.14 | 0.19 |
180 min | 0.19 | 0.13 | 0.28 |
210 min | 0.22 | 0.13 | 0.31 |
240 min | 0.15 | 0.13 | 0.24 |
Tab.2 The crystallinity index of the samples heated at 300°C
骨骼状态 Sample Status 加热时间 Time | 带肉骨 Fleshed bone | 剔肉骨 Defleshed bone | 干骨 Dry bone |
---|---|---|---|
30 min | 0.12 | 0.13 | 0.31 |
60 min | 0.14 | 0.14 | 0.21 |
90 min | 0.11 | 0.13 | 0.36 |
120 min | 0.13 | 0.14 | 0.25 |
150 min | 0.14 | 0.14 | 0.19 |
180 min | 0.19 | 0.13 | 0.28 |
210 min | 0.22 | 0.13 | 0.31 |
240 min | 0.15 | 0.13 | 0.24 |
[1] |
Black D. Evidences of the use of fire by Sinanthropus[J]. Bulletin of the Geological Society of China, 1932,11(2):107-108
doi: 10.1111/j.1755-6724.1932.mp11002002.x URL |
[2] |
Brain CK, Sillen A. Evindence From The Swartkrans Cave For The Earliest Use Of Fire[J]. nature, 1988,336(6198):464-466
doi: 10.1038/336464a0 URL |
[3] |
Shahack-Gross R, Bar-Yosef O, Weiner S. Black-Coloured Bones in Hayonim Cave, Israel: Differentiating Between Burning and Oxide Staining[J]. Journal of Archaeological Science, 1997,24(5):439-446
doi: 10.1006/jasc.1996.0128 URL |
[4] |
Weiner S, Xu Q, Goldberg P, et al. Evidence for the use of fire at Zhoukoudian,China[J]. Science, 1998,281:251-253
doi: 10.1126/science.281.5374.251 URL |
[5] |
Stiner MC, Kuhn SL, Surovell TA, et al. Bone Preservation in Hayonim Cave (Israel): a Macroscopic and Mineralogical Study[J]. Journal of Archaeological Science, 2001,28(6):643-659
doi: 10.1006/jasc.2000.0634 URL |
[6] | Alperson-Afil N, Goren-Inbar N (Eds.). The Acheulian site of Gesher Benot Ya’aqov volume II: Ancient flames and controlled use of fire[M]. Springer Science & Business Media, 2010,10 |
[7] | Berna F, Goldberg P, Horwitz LK, et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(20):E1215-E1220 |
[8] | 高星, 张双权, 张乐, 等. 关于北京猿人用火的证据:研究历史、争议与新进展[J]. 人类学学报, 2016,35(4):481-492 |
[9] |
Gao X, Zhang S, Zhang Y, et al. Evidence of Hominin Use and Maintenance of Fire at Zhoukoudian[J]. Current Anthropology, 2017,58(S16):S267-S277
doi: 10.1086/692501 URL |
[10] |
Stiner MC, Kuhn SL, Weiner S, et al. Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone[J]. Journal of Archaeological Science, 1995,22(2):223-237
doi: 10.1006/jasc.1995.0024 URL |
[11] |
Herrmann B. On histological investigations of cremated human remains[J]. Journal of Human Evolution, 1977,6(2):101-103
doi: 10.1016/S0047-2484(77)80112-7 URL |
[12] | Brain CK. The Occurrence of Burnt Bones at Swartkrans and Their Implications for the Control of Fire by Early Hominids[A].In: Brain CK. Swartkrans: A Cave’s Chronicle of Early man[M]. Pretoria: Transvaal Museum, 1993: 229-242 |
[13] |
Hanson M, Cain CR. Examining histology to identify burned bone[J]. Journal of Archaeological Science, 2007,34(11):1902-1913
doi: 10.1016/j.jas.2007.01.009 URL |
[14] | Shipman P, Foster G, Schoeninger M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage[J]. Journal of Archaeological Science, 1984,4(11):307-325 |
[15] |
Person A, Bocherens H, Saliège J, et al. Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis[J]. Journal of Archaeological Science, 1995,22(2):211-221
doi: 10.1006/jasc.1995.0023 URL |
[16] |
Thompson TJU, Gauthier M, Islam M. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone[J]. Journal of Archaeological Science, 2009,36(3):910-914
doi: 10.1016/j.jas.2008.11.013 URL |
[17] |
Thompson TJU, Islam M, Piduru K, et al. An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,299(1-2):168-174
doi: 10.1016/j.palaeo.2010.10.044 URL |
[18] | Schmahl WW, Kocsis B, Toncala A, et al. The Crystalline State of Archaeological Bone Material[A]. In: Grupe G, Grigat A, Mcglynn GC. Across the Alps in Prehistory[M]. Cham: Springer International Publishing, 2017, 75-104 |
[19] |
Van Hoesel A, Reidsma FH, van Os BJH, et al. Combusted bone: Physical and chemical changes of bone during laboratory simulated heating under oxidising conditions and their relevance for the study of ancient fire use[J]. Journal of Archaeological Science: Reports, 2019,28:102033
doi: 10.1016/j.jasrep.2019.102033 URL |
[20] |
Elliott JC. Calcium Phosphate Biominerals[J]. Reviews in Mineralogy and Geochemistry, 2002,48(1):427-453
doi: 10.2138/rmg.2002.48.11 URL |
[21] |
Monge G, Carretero MI, Pozo M, et al. Mineralogical changes in fossil bone from Cueva del Angel, Spain: archaeological implications and occurrence of whitlockite[J]. Journal of Archaeological Science, 2014,46:6-15
doi: 10.1016/j.jas.2014.02.033 URL |
[22] |
Greiner M, Rodríguez-Navarro A, Heinig MF, et al. Bone incineration: An experimental study on mineral structure, colour and crystalline state[J]. Journal of Archaeological Science: Reports, 2019,25:507-518
doi: 10.1016/j.jasrep.2019.05.009 URL |
[23] |
Hiller JC, Thompson TJU, Evison MP, et al. Bone mineral change during experimental heating: an X-ray scattering investigation[J]. Biomaterials, 2003,24(28):5091-5097
pmid: 14568425 |
[24] |
Piga G, Malgosa A, Thompson TJU, et al. A new calibration of the XRD technique for the study of archaeological burned human remains[J]. Journal of Archaeological Science, 2008,35(8):2171-2178
doi: 10.1016/j.jas.2008.02.003 URL |
[25] |
Rogers K, Beckett S, Kuhn S, et al. Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010,296(1-2):125-129
doi: 10.1016/j.palaeo.2010.06.021 URL |
[26] | 张双权, 张乐, 栗静舒, 等. 晚更新世晚期中国古人类的广谱适应生存——动物考古学的证据[J]. 中国科学:地球科学, 2016,8:1024-1036 |
[27] |
Aldeias V. Experimental Approaches to Archaeological Fire Features and Their Behavioral Relevance[J]. Current Anthropology, 2017,58(S16):S191-S205
doi: 10.1086/691210 URL |
[28] | McKinley JI. The Anglo-Saxon Cemetery at Spong Hill, North Elmham Part VIII: The Cremations. East Anglian Archaeology Report NO.69[M]. Dereham: Norfolk Museum Service, 1994 |
[29] |
Forbes G, Sc. B, B, MBC, et al. The Effects of Heat on the Histological Structure of Bone[J]. The Police Journal, 1941,14(1):50-60
doi: 10.1177/0032258X4101400108 URL |
[30] |
Posner AS. Crystal Chemistry of Bone Mineral[J]. Physiological Reviews, 1969,49(4):760-787
doi: 10.1152/physrev.1969.49.4.760 URL |
[31] |
Jumpei A, Seiichi M. Ca3(PO4)2 - CaNaPO4 System[J]. Bulletin of the Chemical Society of Japan, 1968,41(2):342-347
doi: 10.1246/bcsj.41.342 URL |
[32] | Piga G, Amarante A, Makhoul C, et al. β-Tricalcium Phosphate Interferes with the Assessment of Crystallinity in Burned Skeletal Remains[J]. Journal of Spectroscopy, 2018, ( 3-4):1-10 |
[1] | DU Yuwei, ZHANG Yue, YE Zhi, PEI Shuwen. A taphonomic analysis of faunal remains from the Jijiazhuang Paleolithic site in the Yuxian Basin [J]. Acta Anthropologica Sinica, 2023, 42(03): 359-372. |
[2] | ZHANG Yuzhe, TONG Guang, ZHANG Yueshu, HU Xiaochun, LI Feng. Blind test experiments in the technological interpretation of lithic artifacts [J]. Acta Anthropologica Sinica, 2022, 41(06): 994-1004. |
[3] | LI Nan, LI Chengwei, HE Jianing. A suspected case of the Yue penalty in the Western Zhou period [J]. Acta Anthropologica Sinica, 2022, 41(05): 826-836. |
[4] | HOU Yanfeng, ZHANG Jian, CAO Yanpeng, JIN Songan. Faunal remains of the Yangshao period from the Gouwan site, Xichuan county, Henan province [J]. Acta Anthropologica Sinica, 2022, 41(05): 913-926. |
[5] | XU Yunliang. Effects of different ball games on bone mineral density and directional asymmetry of upper and lower limbs in college students [J]. Acta Anthropologica Sinica, 2021, 40(06): 1023-1031. |
[6] | WU Xianzhu, CHEN Yuzhi, Drozdov NI. Mogera robusta fossils from the Listvenka site, Siberia [J]. Acta Anthropologica Sinica, 2021, 40(06): 1032-1040. |
[7] | LU Liqun, DONG Bing, CHEN Shengqian. An experimental study on Paleolithic spheroids of China [J]. Acta Anthropologica Sinica, 2021, 40(04): 587-599. |
[8] | DAI Jingwen, ZHANG Shuangquan, ZHANG Yue. Exploitation of animal bone fat by prehistoric human [J]. Acta Anthropologica Sinica, 2021, 40(03): 503-512. |
[9] | HU Yaowu. Definition, history, principles and aims of stable isotope bioarchaeology [J]. Acta Anthropologica Sinica, 2021, 40(03): 526-534. |
[10] | TAO Dawei, ZHANG Guowen, ZHOU Yawei, CHEN Zhaoyun, HAN Guohe. Population and society in Guanzhuang settlement during Zhou Dynasty based on bioarchaeological perspective [J]. Acta Anthropologica Sinica, 2021, 40(02): 320-327. |
[11] | HUANG Chao, ZHANG Shuangquan. Technological analysis of burned bones and its implications for Paleolithic archaeology [J]. Acta Anthropologica Sinica, 2020, 39(02): 249-260. |
[12] | ZHANG Shuangquan, SONG Yanhua, ZHANG Yue, XU Le, LI Lei, SHI Jinming. A zooarchaeological analysis of the burned bone from the Shizitan Site 9, Shanxi, China [J]. Acta Anthropologica Sinica, 2019, 38(04): 598-612. |
[13] | ZHANG Yue, ZHANG Shuangquan, GAO Xing. Geographic information system in zooarchaeology: A novel technique in analysis of the faunal remains from the Ma’anshan site, Guizhou, China [J]. Acta Anthropologica Sinica, 2019, 38(03): 407-418. |
[14] | ZHANG Shuangquan, PENG Fei, ZHANG Yue, GUO Jialong, WANG Huimin, HUANG Chao, DAI Jingwen, ZHANG Yuzhe, GAO Xing. Taphonomic observation of faunal remains from the Gezishan Locality 10 in Ningxia Hui Autonomous Region [J]. Acta Anthropologica Sinica, 2019, 38(02): 232-244. |
[15] | WU Xianzhu1, WANG Zhaokui. Small mammalian remians from the Wazhuozui site in Fengdu, Chongqing [J]. Acta Anthropologica Sinica, 2018, 37(03): 452-466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||