Acta Anthropologica Sinica ›› 2025, Vol. 44 ›› Issue (01): 165-180.doi: 10.16359/j.1000-3193/AAS.2024.0019
• Reviews • Previous Articles
Received:
2023-09-15
Revised:
2023-11-15
Online:
2025-02-15
Published:
2025-02-13
CLC Number:
LEI Shuai. Progress and perspectives of the isotope research of human tooth enamel[J]. Acta Anthropologica Sinica, 2025, 44(01): 165-180.
[1] | Dean MC, Liversidge HM, Elamin F. Combining radiographic and histological data for dental development to compare growth in the past and the present[J]. Annals Human Biology, 2014, 41(4): 336-347 |
[2] | 雷帅, 郭怡. 生物考古学视野下人类的牙齿与饮食[J]. 人类学学报, 2022, 41(3): 501-513 |
[3] | Nanci A. Enamel:Composition, formation, and structure[A]. In: Nanci A (Ed.). Ten Cate’s oral histology development, structure, and function[M]. Missouri: Elsevier Mosby, 2008: 141-190 |
[4] |
Beaumont J, Montgomery J. Oral histories: A simple method of assigning chronological age to isotopic values from human dentine collagen[J]. Annals of Human Biology, 2015, 42(4): 407-414
pmid: 26225904 |
[5] | Hillson S. Tooth Development in Human Evolution and Bioarchaeology[M]. Cambridge: Cambridge University Press, 2014: 28-68 |
[6] |
AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: the London Atlas of Human Tooth Development and Eruption[J]. American Journal of Physical Anthropology, 2010, 142(3): 481-490
doi: 10.1002/ajpa.21258 pmid: 20310064 |
[7] | Smith CE. Cellular and chemical events during enamel maturation[J]. Critical Reviews in Oral Biology & Medicine, 1998, 9(2): 128-161 |
[8] | Fincham AG, Simmer JP. Amelogenin proteins of developing dental enamel[J]. Dental Enamel, 1997, 205: 118-134 |
[9] |
Radlanski RJ, Renz H. A possible interdependency between the wavy path of enamel rods, distances of Retzius lines, and mitotic activity at the cervical loop in human teeth: a hypothesis[J]. Medical hypotheses, 2004, 62(6): 945-949
pmid: 15142654 |
[10] | Birch W, Dean C. Rates of enamel formation in human deciduous teeth[J]. Comparative Dental Morphology, 2009, 13: 116-120 |
[11] |
Simmer JP, Papagerakis P, Smith CE, et al. Regulation of Dental Enamel Shape and Hardness[J]. Journal Of Dental Research, 2010, 89(10): 1024-1038
doi: 10.1177/0022034510375829 pmid: 20675598 |
[12] |
Newman HN, Poole DF. Observations with scanning and transmission electron microscopy on the structure of human surface enamel[J]. Archives Of Oral Biology, 1974, 19(12): 1135-1143
pmid: 4531875 |
[13] |
FitzGerald CM. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study[J]. Journal of Human Evolution, 1998, 35(4-5): 371-386
pmid: 9774500 |
[14] |
Reid DJ, Ferrell RJ. The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation[J]. Journal of Human Evolution, 2006, 50(2): 195-202
pmid: 16263151 |
[15] | Nanci A. Development of the tooth and its supporting tissues[A]. In: Nanci A (Ed.). Ten Cate’s Oral Histology Development, Structure, and Function[M]. Missouri: Elsevier Mosby, 2008: 79-107 |
[16] | Beynon AD, Dean MC, Reid DJ. On thick and thin enamel in hominoids[J]. American Journal of Physical Anthropology, 1991, 86(2): 295-309 |
[17] |
Lacruz RS, Bromage TG. Appositional enamel growth in molars of South African fossil hominids[J]. Journal of Anatomy, 2006, 209(1): 13-20
pmid: 16822265 |
[18] |
Kodaka T, Sano T, Higashi S. Structural and calcification patterns of the neonatal line in the enamel of human deciduous teeth[J]. Scanning Microscopy, 1996, 10(3): 737-743
pmid: 9813636 |
[19] |
Dean MC, Scandrett AE. The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth[J]. Archives Of Oral Biology, 1996, 41(3): 233-241
pmid: 8735009 |
[20] |
Beaumont J, Craig-Atkins E, Buckberry J, et al. Comparing apples and oranges: Why infant bone collagen may not reflect dietary intake in the same way as dentine collagen[J]. American Journal of Physical Anthropology, 2018, 167(3): 524-540
doi: 10.1002/ajpa.23682 pmid: 30187451 |
[21] | Hubbard MJ. Calcium transport across the dental enamel epithelium[J]. Critical Reviews in Oral Biology & Medicine, 2000, 11(4): 437-466 |
[22] |
Krachler M, Rossipal E, Micetic-Turk D. Trace element transfer from the mother to the newborn: Investigations on triplets of colostrum, maternal and umbilical cord sera[J]. European Journal of Clinical Nutrition, 1999, 53(6): 486-494
pmid: 10403586 |
[23] |
Rossipal E, Krachler M, Li F, et al. Investigation on the transport of trace elements across barriers in humans: Studies of placental and mammary transfer[J]. Acta Paediatrica, 2000, 89(10): 1190-1195
pmid: 11083374 |
[24] | Humphrey LT, Dean MC, Jeffries TE, et al. Unlocking evidence of early diet from tooth enamel[J]. Proceedings of the National Academy of Science of the United States of America, 2008, 105(19): 6834-6839 |
[25] |
Wilson PR, Beynon AD. Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography[J]. Archives Of Oral Biology, 1989, 34(2): 85-88
doi: 10.1016/0003-9969(89)90130-1 pmid: 2783050 |
[26] |
Wong FSL, Anderson P, Fan H, et al. X-ray microtomographic study of mineral concentration distribution in deciduous enamel[J]. Archives of Oral Biology, 2004, 49(11): 937-944
pmid: 15353251 |
[27] |
Lacruz RS, Habelitz S, Wright JT, et al. Dental enamel formation and implications for oral health and disease[J]. Physiological Reviews, 2017, 97(3): 939-993
doi: 10.1152/physrev.00030.2016 pmid: 28468833 |
[28] | Kohn MJ, Schoeninger MJ, Barker WW. Altered states: Effects of diagenesis on fossil tooth chemistry[J]. Geochimica et Cosmochimica Acta, 1999, 63(18): 2737-2747 |
[29] |
Kubota T, Nakamura A, Toyoura K, et al. The effect of chemical potential on the thermodynamic stability of carbonate ions in hydroxyapatite[J]. Acta Biomaterialia, 2014, 10(8): 3716-3722
doi: 10.1016/j.actbio.2014.05.007 pmid: 24821142 |
[30] | Munro LE, Longstaffe FJ, White CD. Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 266(3-4): 142-150 |
[31] | Koch PL. Isotopic reconstruction of past continental environments[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 573-613 |
[32] | Luz B, Kolodny Y, Horowitz M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water[J]. Geochimica et Cosmochimica Acta, 1984, 48(8): 1689-1693 |
[33] | Iacumin P, Nikolaev V, Ramigni M, et al. Oxygen isotope analyses of mammal bone remains from Holocene sites in European Russia: palaeoclimatic implications[J]. Global and Planetary Change, 2004, 40(1-2): 169-176 |
[34] | Bryant JD, Froelich PN. Oxygen isotope composition of human tooth enamel from medieval Greenland: Linking climate and society: Comment[J]. Geology, 1996, 24(5): 477-478 |
[35] | Iacumin P, Bocherens H, Mariotti A, et al. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate?[J]. Earth and Planetary Science Letters, 1996, 142(1-2): 1-6 |
[36] | Koch PL, Behrensmeyer AK, Tuross N, et al. Isotopic fidelity during bone weathering and burial[J]. Annual Report of the Director of the Geophysical Laboratory, Carnegie Institution of Washington, 1990, 105 |
[37] | Dupras TL. Biogeochemical Approaches to Paleodietary Analysis[J]. American Antiquity, 2002, 67(1): 174-175 |
[38] |
Daux V, Lecuyer C, Heran MA, et al. Oxygen isotope fractionation between human phosphate and water revisited[J]. Journal of Human Evolution, 2008, 55(6): 1138-1147
doi: 10.1016/j.jhevol.2008.06.006 pmid: 18721999 |
[39] |
Chenery CA, Pashley V, Lamb AL, et al. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite[J]. Rapid Communications in Mass Spectrometry, 2012, 26(3): 309-319
doi: 10.1002/rcm.5331 pmid: 22223318 |
[40] | Mascarenhas RD, Sena-Souza JP, Bernasconi SM, et al. Building an isoscape based on tooth enamel for human provenance estimation in Brazil[J]. Forensic Science International, 2022, 330: 1-10 |
[41] | Ambrose SH, Norr L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate[A]. In: Grupe G, Lambert JL (Eds). Prehistoric Human Bone Archaeology at the Molecular Level[M]. Berlin: Springer-Verlag, 1993: 1-13 |
[42] | Tieszen LL, Fagre T. Effects of diet quality and composition of respiratory CO2, bone collagen, bioapatite, and soft tissues[A]. In: Grupe G, Lambert JL (Eds). Prehistoric Human Bone Archaeology at the Molecular Level[M]. Berlin: Springer-Verlag, 1993: 123-135 |
[43] | Krueger HW, Sullivan CH. Models for carbon isotope fractionation between diet and bone[J]. Acs Symposium Series, 1984, 258: 205-220 |
[44] | Lee-Thorp JA, Sealey JC, van der Merwe NJ. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet[J]. Journal of Archaeological Science, 1989, 16(6): 585-599 |
[45] | 吴晓桐, 张兴香. 关于锶同位素考古研究的几个问题[J]. 人类学学报, 2022, 41(3): 535-550 |
[46] | 唐自华, 王学烨, 陈相龙, 等. 凤翔雍山血池遗址北斗坊地点牛、马牙釉质的锶同位素研究[J]. 考古与文物, 2020(6): 122-125 |
[47] | Kohn MJ, Cerling TE. Stable Isotope Compositions of Biological Apatite[J]. Phosphates: Geochemical, Geobiological, and Materials Importance, 2008, 48: 455-488 |
[48] | Smith CI, Nielsen-Marsh CM, Jans MME, et al. The strange case of Apigliano: early ‘fossilization’ of medieval bone in southern Italy[J]. Archaeometry, 2002, 44: 405-415 |
[49] | Hedges REM. Bone diagenesis: An overview of processes[J]. Archaeometry, 2002, 44: 319-328 |
[50] | Nielsen-Marsh C, Hedges REM. Patterns of diagenesis in bone I: the effects of site environments[J]. Journal of Archaeological Science, 2000, 27(12): 1139-1150 |
[51] | Nielsen-Marsh C, Hedges REM. Patterns of diagenesis in bone II: effects of acetic acid treatment and removal of diagenetic CO32-[J]. Journal of Archaeological Science, 2000, 27(12): 1151-1159 |
[52] | Bartsiokas A, Middleton AP. Characterization and dating of recent and fossil bone by X-ray diffraction[J]. Journal of Archaeological Science, 1992, 19(1): 63-72 |
[53] | Person A, Bocherens H, Saliège JF, et al. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis[J]. Journal of Archaeological Science, 1995, 22(2): 211-221 |
[54] | Krueger HW. Exchange of carbon with biological apatite[J]. Journal of Archaeological Science, 1991, 18(3): 355-361 |
[55] | Hoppe KA, Koch PL, Furutani TT. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel[J]. International Journal of Osteoarchaeology, 2003, 13(1-2): 20-28 |
[56] | Price TD, Blitz J, Burton JH, et al. Diagenesis in prehistoric bone: problems and solutions[J]. Journal of Archaeological Science, 1992, 19(5): 513-529 |
[57] | 胡耀武, 王昌燧, 何德亮, 等. 古代人骨羟磷灰石的去污染研究[J]. 考古, 2006(7): 68-74 |
[58] | Lee-Thorp JA, van der Merwe NJ. Aspects of the chemistry of modern and fossil biological apatites[J]. Journal of Archaeological Science, 1991, 18(3): 343-354 |
[59] | Margolis HC, Kwak SY, Yamazaki H. Role of mineralization inhibitors in the regulation of hard tissue biomineralization: Relevance to initial enamel formation and maturation[J]. Frontiers in Physiology, 2014, 5: 1-10 |
[60] |
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications[J]. Biomatter, 2011, 1(2): 121-164
doi: 10.4161/biom.18790 pmid: 23507744 |
[61] | Perry MA, Provan M, Tykot RH, et al. Using dental enamel to uncover the impact of childhood diet on mortality in Petra, Jordan[J]. Journal of Archaeological Science: Reports, 2020, 29: 1-13 |
[62] | Koch PL, Tuross N, Fogel M. The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite[J]. Journal of Archaeological Science, 1997, 24(5): 417-429 |
[63] | Kohn MJ, Cerling TE. Stable Isotope Compositions of Biological Apatite[J]. Phosphates: Geochemical, Geobiological, and Materials Importance, 2002, 48: 455-488 |
[64] | Zazzo A, Mariotti A, Lécuyer C, et al. Heintz, Intra-tooth isotope variations in late Miocene bovid enamel from Afghanistan: Paleobiological, taphonomic, and climatic implications[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 186(1-2): 145-161 |
[65] |
Wright LE, Schwarcz HP. Stable carbon and oxygen isotopes in human tooth enamel: Identifying breastfeeding and weaning in prehistory[J]. American Journal of Physical Anthropology, 1998, 106(1): 1-18
pmid: 9590521 |
[66] | Dabrowski P, Kulus M, Grzelak J, et al. Assessing weaning stress-Relations between enamel hypoplasia, delta δ18O and delta δ13C values in human teeth obtained from early modern cemeteries in Wroclaw, Poland[J]. Annals Of Anatomy-anatomischer Anzeiger, 2020, 232: 1-13 |
[67] | Velasco MC, Tung TA. Shaping dietary histories: Exploring the relationship between cranial modification and childhood feeding in a high-altitude Andean population (1100-1450 CE)[J]. Journal of Anthropological Archaeology, 2021, 62: 1-19 |
[68] |
Pryor AJE, Insoll T, Evis L. Laser ablation strontium isotope analysis of human remains from Harlaa and Sofi, eastern Ethiopia, and the implications for Islamisation and mobility[J]. Science and Technology of Archaeological Research, 2020, 6(1): 113-136
doi: 10.1080/20548923.2020.1843266 |
[69] | Smith TM, Austin C, Green DR, et al. Wintertime stress, nursing, and lead exposure in Neanderthal children[J]. Science Advances, 2018, 4(10): 1-9 |
[70] | Bryant JD, Froelich PN, Showers WJ, et al. A tale of two quarries: biologic and taphonomic signatures in the oxygen isotope composition of tooth enamel phosphate from modern and Miocene equids[J]. Palaios, 1996, 11(4): 397-408 |
[71] | Wright LE. Examining childhood diets at Kaminaljuyu, Guatemala, through stable isotopic analysis of sequential enamel microsamples[J]. Archaeometry, 2013, 55(1): 113-133 |
[72] | Roberts SB, Coward WA, Ewing G, et al. Effect of weaning on accuracy of doubly labeled water method in infants[J]. American Journal of Physiology Anthropology, 1988, 254(4): 622-627 |
[73] | Tsutaya T, Yoneda M. Reconstruction of Breastfeeding and Weaning Practices Using Stable Isotope and Trace Element Analyses: A Review[J]. American Journal of Physical Anthropology, 2015, 156: 2-21 |
[74] | Martin JE, Vance D, Balter V. Magnesium stable isotope ecology using mammal tooth enamel[J]. Proceedings of the National Academy of Science of the United States of America, 2015, 112(2): 430-435 |
[75] | Sponheimer M, Loudon JE, Codron D, et al. Reply to Fontes-Villalba et al.: On a reluctance to conjecture about animal food consumption[J]. Proceedings of the National Academy of Science of the United States of America, 2013, 110(43): E4056 |
[76] | Lei S, Gu WF, Wu Q, et al. Early childhood nurturing strategies in groups of the Yellow River's middle reaches from the late Yangshao culture (3500-2800 BC): A stable isotope perspective[J]. International Journal of Osteoarchaeology, 2023, 33(5): 920-938 |
[77] | Chu NC, Henderson GM, Belshaw NS, et al. Establishing the potential of Ca isotopes as proxy for consumption of dairy products[J]. Applied Geochemistry, 2006, 21(10): 1656-1667 |
[78] | Jaouen K, Villalba-Mouco V, Smith GM, et al. A Neandertal dietary conundrum: Insights provided by tooth enamel Zn isotopes from Gabasa, Spain[J]. Proceedings of the National Academy of Science of the United States of America, 2022, 119(43): 1-9 |
[79] | Bourgon N, Jaouen K, Bacon AM, et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes[J]. Journal of Human Evolution, 2021, 161: 1-10 |
[80] | Jaouen K, Beasley M, Schoeninger M, et al. Zinc isotope ratios of bones and teeth as new dietary indicators: Results from a modern food web (Koobi Fora, Kenya)[J]. Scientific Reports, 2016, 6: 1-8 |
[81] |
Jaouen K, Pouilloux L, Balter V, et al. Dynamic homeostasis modeling of Zn isotope ratios in the human body[J]. Metallomics, 2019, 11(6): 1049-1059
doi: 10.1039/c8mt00286j pmid: 30848262 |
[82] | Jaouen K, Colleter R, Pietrzak A, et al. Tracing intensive fish and meat consumption using Zn isotope ratios: Evidence from a historical Breton population (Rennes, France)[J]. Scientific Reports, 2018, 8: 1-12 |
[83] | Jaouen K, Szpak P, Richards MP. Zinc isotope ratios as indicators of diet and trophic level in Arctic marine mammals[J]. PLoS One, 2016, 11(3): 1-13 |
[84] | Costas-Rodríguez M, Van Heghe L, Vanhaecke F. Evidence for a possible dietary effect on the isotopic composition of Zn in blood via isotopic analysis of food products by multi-collector ICP-mass spectrometry[J]. Metallomics, 2014, 6(1): 139-146. |
[85] | Jaouen K, Pons ML, Balter V. Iron, copper and zinc isotopic fractionation up mammal trophic chains[J]. Earth and Planetary Science Letters, 2013, 374: 164-172 |
[86] | Tacail T, Thivichon-Prince B, Martin JE, et al. Assessing human weaning practices with calcium isotopes in tooth enamel[J]. Proceedings of the National Academy of Science of the United States of America, 2017, 114(24): 6268-6273 |
[87] | Li Q, Nava A, Reynard LM, et al. Spatially-Resolved Ca Isotopic and Trace Element Variations in Human Deciduous Teeth Record Diet and Physiological Change[J]. Environmental Archaeology, 2022, 27(5): 474-483 |
[88] | Martin JE, Vance D, Balter V, et al. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains[J]. Geochimica et Cosmochimica Acta, 2014, 130: 12-20 |
[89] |
Ungar PS, Sponheimer M. The diets of early hominins[J]. Science, 2011, 334(6053): 190-193
doi: 10.1126/science.1207701 pmid: 21998380 |
[90] | Cerling TE, Mbua E, Kirera FM. Diet of Paranthropus boisei in the early Pleistocene of East Africa[J]. Proceedings of the National Academy of Science of the United States of America, 2011, 108(23): 9337-9341 |
[91] |
Balter V, Martin JE, Tacail T, et al. Calcium stable isotopes place Devonian conodonts as first level consumers[J]. Geochemical Perspectives Letters, 2019, 10: 36-39
doi: 10.7185/geochemlet.1912 |
[92] |
Cloquet C, Carignan J, Lehmann MF, et al. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review[J]. Analytical and Bioanalytical Chemistry, 2008, 390(2): 451-463
pmid: 17952419 |
[93] |
Podlesak DW, Bowen GJ, O’Grady S, et al. Delta δ2H and delta δ18O of human body water: a GIS model to distinguish residents from non-residents in the contiguous USA[J]. Isotopes in Environmental and Health Studies, 2012, 48(2): 259-279
doi: 10.1080/10256016.2012.644283 pmid: 22397457 |
[94] | Ugan A, Neme G, Gil A, et al. Geographic variation in bone carbonate and water delta δ18O values in Mendoza, Argentina and their relationship to prehistoric economy and settlement[J]. Journal of Archaeological Science, 2012, 39(8): 2752-2763 |
[95] | Gil A, Neme G, Ugan A, et al. Oxygen isotopes and human residential mobility in central western Argentina[J]. International Journal of Osteoarchaeology, 2014, 24(1): 31-41 |
[96] | 李大伟, 王伟, 廖卫. 广西更新世早期么会洞遗址动物牙釉质的C、O稳定同位素分析——试析华南地区直立人的生存环境[J]. 人类学学报, 2022, 42(4): 212-222 |
[97] |
Pollard AM, Pellegrini M, Lee-Thorp JA. Technical Note: Some Observations on the Conversion of Dental Enamel delta δ18OpValues to delta δ18Ow to Determine Human Mobility[J]. American Journal of Physical Anthropology, 2011, 145(3): 499-504
doi: 10.1002/ajpa.21524 pmid: 21541927 |
[98] | Terzer S, Wassenaar LI, Araguás-Araguás LJ, et al. Global isoscapes for delta δ18O and delta δ2H in precipitation: improved prediction using regionalized climatic regression models[J]. Hydrology And Earth System Sciences, 2013, 17(11): 4713-4728 |
[99] | West AG, February EC, Bowen GJ. Spatial analysis of hydrogen and oxygen stable isotopes ("isoscapes") in ground water and tap water across South Africa[J]. Journal Of Geochemical Exploration, 2014, 145: 213-222 |
[100] | 董宁宁. 动物牙釉质氧同位素分析:一种季节性研究的新方法[J]. 江汉考古, 2016(2): 53-61 |
[101] | Longinelli A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?[J]. Geochimica et Cosmochimica Acta, 1984, 48(2): 385-390 |
[102] | Levinson AA, Luz B, Kolodny Y. Variations in oxygen isotopic compositions of human teeth and urinary stones[J]. Applied Geochemistry, 1987, 2(4): 367-371 |
[103] | Keller AT, Regan LA, Lundstrom CC, et al. Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing of human remains[J]. Forensic Science International-Genetics, 2016, 261: 83-92 |
[104] |
Warner MM, Plemons AM, Herrmann NP, et al. Refining Stable Oxygen and Hydrogen Isoscapes for the Identification of Human Remains in Mississippi[J]. Journal Of Forensic Sciences, 2018, 63(2): 395-402
doi: 10.1111/1556-4029.13575 pmid: 28664651 |
[105] | Bowen GJ, Wilkinson B. Spatial distribution of δ18O in meteoric precipitation[J]. Geology, 2002, 30(4): 315-318 |
[106] | Bowen GJ, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation[J]. Water Resources Research, 2003, 30(4): 315-318 |
[107] | Zhao SH, Hu HC, Tian FQ, et al. Divergence of stable isotopes in tap water across China[J]. Scientific Reports, 2017, 7: 1-14 |
[108] | Chesson LA, Tipple BJ, Mackey GN, et al. Strontium isotopes in tap water from the coterminous USA[J]. Ecosphere, 2012, 3(7): 1-17 |
[109] |
Ammer STM, Bartelink EJ, Vollner JM, et al. Spatial Distributions of Oxygen Stable Isotope Ratios in Tap Water From Mexico for Region of Origin Predictions of Unidentified Border Crossers[J]. Journal Of Forensic Sciences, 2020, 65(4): 1049-1055
doi: 10.1111/1556-4029.14283 pmid: 31999362 |
[110] | Daux V, Minster B, Cauquoin A, et al. Oxygen and hydrogen isotopic composition of tap waters in France[J]. Geological Society Special Publication, 2021, 507(1): 47-61 |
[111] | Gautam MK, Song BY, Shin WJ, et al. Spatial variations in oxygen and hydrogen isotopes in waters and human hair across South Korea[J]. Science of the Total Environment, 2020, 726: 1-12 |
[112] |
Reitsema LJ, Crews DE. Brief communication: oxygen isotopes as a biomarker for sickle-cell disease? Results from transgenic mice expressing human hemoglobin S genes[J]. American Journal of Physical Anthropology, 2011, 145(3): 495-498
doi: 10.1002/ajpa.21513 pmid: 21541922 |
[113] | Warinner C, Tuross N. Alkaline Cooking and Stable Isotope Tissue-diet Spacing in Swine: Archaeological Implications[J]. Journal of Archaeological Science, 2009, 36(8): 1690-1697 |
[114] | Brettell R, Montgomery J, Evans J. Brewing and Stewing: The Effect of Culturally Mediated Behavior on the Oxygen Isotope Composition of Ingested Fluids and the Implications for Human Provenance Studies[J]. Journal Of Analytical Atomic Spectrometry, 2012, 27(5): 778-785 |
[115] | Kennedy BP, Folt CL, Blum JD, et al. Natural isotope markers in salmon[J]. Nature, 1997, 387(6635): 766-767 |
[116] | Beard BL, Johnson CM. Strontium isotope compositions of skeletal material can determine the birth place and geographic mobility of animals and humans[J]. Journal of Forensic Science, 2000, 45(5): 1049-1061 |
[117] | Slovak NM, Paytan A. Applications of Sr Isotopes in Archaeology[A]. In: Baskaran M (Ed.). Handbook of Environmental Isotope Geochemistry[M]. Berlin: Springer, 2012: 743-768 |
[118] | Wang XY, Tang ZX, Dong XX. Distribution of strontium isotopes in river waters across the Tarim Basin: a map for migration studies[J]. Journal of the Geological Society, 2018, 175(6): 967-973 |
[119] | Budd P, Montgomery J, Barreiro B, et al. Differential diagenesis of strontium in archaeological human dental tissues[J]. Applied Geochemistry, 2000, 15(5): 687-694 |
[120] | Kusaka S, Nakano T, Yumoto T, et al. Strontium isotope evidence of migration and diet in relation to ritual tooth ablation: A case study from the Inariyama Jomon site, Japan[J]. Journal of Archaeological Science, 2011, 38(1): 166-174 |
[121] | Giblin J, Knudson K, Bereczki Z, et al. Strontium isotope analysis and human mobility during the Neolithic and Copper Age: a case study from the Great Hungarian Plain[J]. Journal of Archaeological Science, 2013, 40(1): 227-239 |
[122] | 丛德新, 赵春燕, 贾伟明. 新疆阿敦乔鲁遗址人类迁移行为与食物结构的初步研究[J]. 江汉考古, 2021(6): 233-239 |
[123] | Laffoon JE, Shuler KA, Millard AR, et al. Isotopic evidence for anthropogenic lead exposure on a 17th/18th century Barbadian plantation[J]. American Journal of Physical Anthropology, 2019, 171(3): 529-538 |
[124] | Evans JA, Pashley V, Mee K, et al. Applying lead (Pb) isotopes to explore mobility in humans and animals[J]. PLoS One, 2022, 17(10): 1-17 |
[125] | Munkittrick TJA, Varney TL, Grimes V. The use and abuse of Pb in bioarchaeological studies: A review of Pb concentration and isotope analyses of teeth[J]. Journal of Archaeological Science, 2023, 156: 1-14 |
[126] | Montgomery J, Budd P, Evans J. Reconstructing the lifetime movements of ancient people: A Neolithic case study from southern England[J]. European Journal of Archaeology, 2000, 3(3): 370-385 |
[127] |
Gulson BL, Mizon KJ, Korsch MJ, et al. Mobilization of lead from human bone tissue during pregnancy and lactation-a summary of longterm research[J]. Science of The Total Environment, 2003, 303(1-2): 79-104
pmid: 12568766 |
[128] | Ishida LY, de Faria RA, Barros FS, et al. Isotope Analysis in Human Teeth as a Tool for Forensic Identification and Georeferencing[J]. XXVI Brazilian Congress on Biomedical Engineering, 2019, 70(2): 699-705 |
[129] | Evans JA, Pashley V, Chenery CA, et al. Lead isotope analysis of tooth enamel from a Viking age mass grave in southern Britain and the constraints in places on the origin of the individuals[J]. Archaeometry, 2018, 60(4): 859-869 |
[130] | Kamenov GD, Logaro EM, Goad G, et al. Trace elements in modern and archaeological human teeth: implications for human metal exposure and enamel diagenetic changes[J]. Journal of Archaeological Science, 2018, 99: 27-34 |
[131] |
Shepherd TJ, Dirks W, Roberts NMW, et al. Tracing fetal and childhood exposure to lead using isotope analysis of deciduous teeth[J]. Environmental Research, 2016, 146: 145-153
doi: 10.1016/j.envres.2015.12.017 pmid: 26752082 |
[132] | Boethius A, Kjällquist M, Kielman-Schmitt M, et al. Early Holocene Scandinavian foragers on a journey to affluence: Mesolithic fish exploitation, seasonal abundance and storage investigated through strontium isotope ratios by laser ablation (LA-MC-ICP-MS)[J]. PLoS One, 2021, 16(1): 1-29 |
[133] | Boethius A, Ahlström T, Kielman-Schmitt M, et al. Assessing laser ablation multi-collector inductively coupled plasma mass spectrometry as a tool to study archaeological and modern human mobility through strontium isotope analyses of tooth enamel[J]. Archaeological and Anthropological Sciences, 2022, 14(5): 1-28 |
[134] | 赵春燕, 王明辉, 叶茂林. 青海喇家遗址人类遗骸的锶同位素比值分析[J]. 人类学学报, 2016, 35(2): 212-222 |
[135] |
Kohn MJ. You are what you eat[J]. Science, 1999, 283(5400): 335-336
pmid: 9925492 |
[136] |
Reitsema LJ. Beyond Diet Reconstruction: Stable Isotope Applications to Human Physiology, Health, and Nutrition[J]. American Journal of Human Biology, 2013, 25(4): 445-456
doi: 10.1002/ajhb.22398 pmid: 23784719 |
[137] | Fuller BT, Fuller JL, Sage NE, et al. Nitrogen balance and δ15N: why you’re not what you eat during pregnancy[J]. Rapid Communications in Mass Spectrometry, 2004, 18(23): 2889-2896 |
[138] | Kuo TC, Wang CH, Lin HC, et al. Assessment of renal function by the stable oxygen and hydrogen isotopes in human blood plasma[J]. PLoS One, 2012, 7(2): 1-9 |
[139] | Li Q, Thirlwall M, Müller W. Ca Isotopic Analysis of Laser-Cut Microsamples of (Bio) Apatite Without Chemical Purification[J]. Chemical Geology, 2016, 422: 1-12 |
[140] | Coudray C, Feillet-Coudray C, Rambeau M, et al. Stable isotopes in studies of intestinal absorption, exchangeable pools and mineral status: the exampleof magnesium[J]. Journal of Trace Elements in Medicine and Biology, 2005, 19(1): 97-103 |
[141] | Richards MP, Montgomery J. Isotope analysis and paleopathology:a short review and future developments[A]. In: Buikstra J, Roberts C (Eds). The Global History of Paleopathology: Pioneers and Prospects[M]. Oxford: Oxford University Press, 2012: 718-731 |
[142] | 胡耀武. 稳定同位素生物考古学的概念、简史、原理和目标[J]. 人类学学报, 2021, 40(3): 526-534 |
[1] | WU Xiaotong, ZHANG Xingxiang. Discussion on several issues of Sr isotopic archaeology [J]. Acta Anthropologica Sinica, 2022, 41(03): 535-550. |
[2] | XU Zhe, MA Jiao, PEI Shuwen. Study on the relationship between environmental change and human evolution: Evidence from mammalian tooth enamel carbon and oxygen stable isotope analysis [J]. Acta Anthropologica Sinica, 2021, 40(03): 454-468. |
[3] | PAN Lei, LIAO Wei, WANG Wei, LIU Jianhui, JI Xueping, YANG Xiaomei, HAO Yixin. Geometric morphometry of the enamel-dentine junction interface of Lufengpithecus hudienensis lower fourth premolars [J]. Acta Anthropologica Sinica, 2020, 39(04): 555-563. |
[4] | XING Song. Enamel defects of the Xujiayao juvenile [J]. Acta Anthropologica Sinica, 2019, 38(04): 499-512. |
[5] | PAN Lei. Effects of two separation methods of crown and root on enamel thickness measurements [J]. Acta Anthropologica Sinica, 2019, 38(03): 398-406. |
[6] | LIU Wu, John WILLMAN,CAO Bo, ZHANG Pu, DONG Xin, WU Xiujie. Tooth enamel chipping of Late Pleistocene humans from Maomaodong, Guizhou Province, China [J]. Acta Anthropologica Sinica, 2017, 36(04): 427-437. |
[7] | Huanjiu Xi, Wenhui Li, Youfeng Wen, Kun Liu. Altitude effects on growth and development of children and adolescents [J]. Acta Anthropologica Sinica, 2016, 35(02): 267-282. |
[8] | WANG Cuibin, ZHAO Lingxia. New Observations of Linear Enamel Hypoplasia from Late Miocene Lufengpithecus lufengensis of Yunnan, South China [J]. Acta Anthropologica Sinica, 2015, 34(04): 544-552. |
[9] | HU Rong, ZHAO Lingxia. CT Analysis on Enamel Thickness of Pleistocene Fossil Orangutan from Guangxi, South China [J]. Acta Anthropologica Sinica, 2015, 34(03): 404-416. |
[10] | ZHANG Li-zhao; ZHAO Ling-xia. Enamel thickness of Gigantopithecus blacki and its significance for dietary adaptation and phylogeny [J]. Acta Anthropologica Sinica, 2013, 32(03): 365-376. |
[11] | ZHANG Ya-jun; HE Nu; YIN Xing-zhe. Paleopathological lesions and osteological wounds of human bone from the Taosi site, Shanxi Province [J]. Acta Anthropologica Sinica, 2011, 30(03): 265-273. |
[12] | ZHANG Ying-xiu. Trends in development among children and adolescents in Shandong from 1985 to 2005 [J]. Acta Anthropologica Sinica, 2009, 28(01): 57-63. |
[13] | ZHANG Mingtao, TANG Yong, LIANG Shaohua, MENG Xinling, WANG Lanting. The comparison and analysis of physical development of Kazak students for the past 10 years [J]. Acta Anthropologica Sinica, 2005, 24(01): 54-57. |
[14] | ZHAO Ling-xia. Linear enamel hypoplasia of lufengpithecus lufengensis [J]. Acta Anthropologica Sinica, 2004, 23(02): 111-118. |
[15] | ZHANG Ying-xiu. Development of Chinese children in eleven coastal province [J]. Acta Anthropologica Sinica, 2004, 23(02): 159-163. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||