Acta Anthropologica Sinica ›› 2019, Vol. 38 ›› Issue (03): 398-406.doi: 10.16359/j.cnki.cn11-1963/q.2018.0028
Previous Articles Next Articles
Received:
2017-05-05
Revised:
2018-03-27
Online:
2019-08-15
Published:
2020-09-10
CLC Number:
PAN Lei. Effects of two separation methods of crown and root on enamel thickness measurements[J]. Acta Anthropologica Sinica, 2019, 38(03): 398-406.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.cnki.cn11-1963/q.2018.0028
Fig.1 A sketch of two protocols(modified from Benazzi et al[18]) A. Method 3D-b digitally isolates the crown using the cervical line(orange), the bottom of the crown was sealed by a smooth surface interpolating the cervical line. B. Method 3D-c sections the teeth using a basal plane(red), which is halfway between Plane A and Plane B(orange). See Introduction for the explanation of Planes A and B
Taxa | P3(n) | P4(n) | M1(n) | M2(n) | M3(n) | Provenance | Enamel thickness data |
---|---|---|---|---|---|---|---|
P. robustus | 2 | 2 | 2 | 6 | 7 | Swartkrans Members 1, 2; Kromdraai B | Pan et al[ |
Au. africanus | 1 | 1 | 1 | Sterkfontein Member 4 | Pan et al[ | ||
Early Homo | 1 | 1 | 1 | 1 | Swartkrans Members 1, 2 | Pan et al[ | |
Neanderthals | 5 | 4 | 5 | 3 | 5 | Montmaurin; La Chaise Abri Suard; Krapina Level 8 | Pan et al[ |
Modern humans | 7 | 7 | 9 | 6 | 5 | Central Europe; East Asia | Pan et al[ |
Tab.1 Composition of the study sample
Taxa | P3(n) | P4(n) | M1(n) | M2(n) | M3(n) | Provenance | Enamel thickness data |
---|---|---|---|---|---|---|---|
P. robustus | 2 | 2 | 2 | 6 | 7 | Swartkrans Members 1, 2; Kromdraai B | Pan et al[ |
Au. africanus | 1 | 1 | 1 | Sterkfontein Member 4 | Pan et al[ | ||
Early Homo | 1 | 1 | 1 | 1 | Swartkrans Members 1, 2 | Pan et al[ | |
Neanderthals | 5 | 4 | 5 | 3 | 5 | Montmaurin; La Chaise Abri Suard; Krapina Level 8 | Pan et al[ |
Modern humans | 7 | 7 | 9 | 6 | 5 | Central Europe; East Asia | Pan et al[ |
AET-b(mm) | AET-c(mm) | RET-b | RET-c | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | ||
Au. africanus | Premolars | 1.35 | - | 1.53 | - | 22.38 | - | 24.67 | - |
Molars | 1.82 | 1.81-1.83 | 1.94 | 1.88-1.99 | 26.91 | 25.74-28.08 | 29.50 | 28.00-31.00 | |
P. robustus | Premolars | 1.83 | 1.70-2.06 | 1.95 | 1.83-2.17 | 29.87 | 23.38-35.46 | 32.84 | 27.09-41.17 |
Molars | 2.06 | 1.66-2.70 | 2.18 | 1.64-2.78 | 24.83 | 19.32-38.00 | 27.51 | 19.44-48.56 | |
Early Homo | Premolars | 1.64 | 1.48-1.79 | 1.65 | 1.46-1.85 | 31.00 | 29.03-32.97 | 32.46 | 28.45-36.48 |
Molars | 1.57 | 1.38-1.77 | 1.58 | 1.37-1.79 | 23.78 | 20.05-27.52 | 26.31 | 20.23-32.39 | |
Neanderthals | Premolars | 0.73 | 0.59-1.10 | 0.80 | 0.60-1.11 | 12.80 | 9.96-19.03 | 13.92 | 10.27-19.07 |
Molars | 1.31 | 1.10-1.54 | 1.30 | 1.04-1.61 | 19.08 | 16.05-23.73 | 18.84 | 15.06-24.77 | |
H. sapiens | Premolars | 1.13 | 0.81-1.61 | 1.14 | 0.85-1.65 | 25.31 | 18.19-31.72 | 24.73 | 19.84-32.75 |
Molars | 1.36 | 1.06-1.69 | 1.37 | 1.12-1.60 | 22.53 | 17.56-28.39 | 23.06 | 19.04-27.26 |
Tab.2 Average and range of enamel thickness values using 3D-b and 3D-c methods
AET-b(mm) | AET-c(mm) | RET-b | RET-c | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | ||
Au. africanus | Premolars | 1.35 | - | 1.53 | - | 22.38 | - | 24.67 | - |
Molars | 1.82 | 1.81-1.83 | 1.94 | 1.88-1.99 | 26.91 | 25.74-28.08 | 29.50 | 28.00-31.00 | |
P. robustus | Premolars | 1.83 | 1.70-2.06 | 1.95 | 1.83-2.17 | 29.87 | 23.38-35.46 | 32.84 | 27.09-41.17 |
Molars | 2.06 | 1.66-2.70 | 2.18 | 1.64-2.78 | 24.83 | 19.32-38.00 | 27.51 | 19.44-48.56 | |
Early Homo | Premolars | 1.64 | 1.48-1.79 | 1.65 | 1.46-1.85 | 31.00 | 29.03-32.97 | 32.46 | 28.45-36.48 |
Molars | 1.57 | 1.38-1.77 | 1.58 | 1.37-1.79 | 23.78 | 20.05-27.52 | 26.31 | 20.23-32.39 | |
Neanderthals | Premolars | 0.73 | 0.59-1.10 | 0.80 | 0.60-1.11 | 12.80 | 9.96-19.03 | 13.92 | 10.27-19.07 |
Molars | 1.31 | 1.10-1.54 | 1.30 | 1.04-1.61 | 19.08 | 16.05-23.73 | 18.84 | 15.06-24.77 | |
H. sapiens | Premolars | 1.13 | 0.81-1.61 | 1.14 | 0.85-1.65 | 25.31 | 18.19-31.72 | 24.73 | 19.84-32.75 |
Molars | 1.36 | 1.06-1.69 | 1.37 | 1.12-1.60 | 22.53 | 17.56-28.39 | 23.06 | 19.04-27.26 |
Tooth position | Group 1 | Group 2 | AET-b | AET-c | RET-b | RET-c |
---|---|---|---|---|---|---|
Premolars | Neanderthals | P. robustus | < | < | ||
Neanderthals | Early Homo | < | ||||
Neanderthals | H. sapiens | < | < | |||
Neanderthals | P. robustus | < | < | |||
Neanderthals | Au. africanus | < | < | |||
Molars | Au. africanus | Neanderthals | > | > | ||
P. robustus | H. sapiens | > | > | |||
P. robustus | Neanderthals | > | > | > | > | |
Early Homo | Neanderthals | |||||
H. sapiens | Neanderthals | > | > |
Tab.3 Conover’s post hoc pairwise comparisons after the Kruskal-Wallis test are reported below(significant results only)
Tooth position | Group 1 | Group 2 | AET-b | AET-c | RET-b | RET-c |
---|---|---|---|---|---|---|
Premolars | Neanderthals | P. robustus | < | < | ||
Neanderthals | Early Homo | < | ||||
Neanderthals | H. sapiens | < | < | |||
Neanderthals | P. robustus | < | < | |||
Neanderthals | Au. africanus | < | < | |||
Molars | Au. africanus | Neanderthals | > | > | ||
P. robustus | H. sapiens | > | > | |||
P. robustus | Neanderthals | > | > | > | > | |
Early Homo | Neanderthals | |||||
H. sapiens | Neanderthals | > | > |
Fig.2 Average and relative enamel thickness(AET and RET) values in each taxon, provided by 3D-b and 3D-c methods A, B. AET; C, D. RET. Standard box and whisker plot revealing the interquartile range(25th-75th percentiles: boxes), 1.5 interquartile ranges(whiskers) and the median values(black line). Outliers more than 1.5 interquartile ranges from the box are signi?ed with circles, extremes more than 3 interquartile ranges from the box are signified with asterisks. AFR: Au. africanus; ROB: P. robustus; NEA: Neanderthals; EH: Extant human
Dental classes | Premolar AET | Premolar RET | Molar AET | Molar RET |
---|---|---|---|---|
Sig.(p) | 0.06 | 0.27 | 0.15 | 0.1 |
Tab.4 Paired t-test for differences in the enamel thickness values between 3D-b and 3D-c methods
Dental classes | Premolar AET | Premolar RET | Molar AET | Molar RET |
---|---|---|---|---|
Sig.(p) | 0.06 | 0.27 | 0.15 | 0.1 |
[1] | Kay R. The nut-crackers—A new theory of the adaptations of the Ramapithecinae[J]. American Journal of Physical Anthropology, 1981,55:141-151 |
[2] | Kay R. Dental evidence for the diet of Australopithecus[J]. Annual Review of Anthropology, 1985,14:315-341 |
[3] |
Martin L. Significance of enamel thickness in hominoid evolution[J]. Nature, 1985,314:260-263
URL pmid: 3920525 |
[4] | Ungar PS, Grine FE, Teaford MF, et al. Dental microwear and diets of African early Homo[J]. Journal of Human Evolution, 2006,50:78-95 |
[5] | Kono R, Suwa G. Enamel distribution patterns of extant human and hominoid molars: occlusal versus lateral enamel thickness[J]. Bulletin of the National Museum of Nature and Science, 2008,34:1-9 |
[6] |
Olejniczak A, Tafforeau P, Feeney RNM, et al. Three-dimensional primate molar enamel thickness[J]. Journal of Human Evolution, 2008,54:187-195
URL pmid: 18045652 |
[7] |
Smith TM, Olejniczak AJ, Reh S, et al. Brief communication: Enamel thickness trends in the dental arcade of humans and chimpanzees[J]. American Journal of Physical Anthropology, 2008,136:237-241
doi: 10.1002/ajpa.20796 URL pmid: 18324634 |
[8] |
Beynon A, Wood B. Variations in enamel thickness and structure in east African hominids[J]. American Journal of Physical Anthropology, 1986,70:177-193
URL pmid: 3090891 |
[9] |
White TD, Suwa G, Asfaw B. Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia[J]. Nature, 1994,371:306-312
doi: 10.1038/371306a0 URL pmid: 8090200 |
[10] |
Molnar S, Hildebolt C, Molnar IM, et al. Hominid enamel thickness: I. The Krapina neandertals[J]. American Journal of Physical Anthropology, 1993,92:131-138
doi: 10.1002/ajpa.1330920202 URL pmid: 8273825 |
[11] |
Smith TM, Olejniczak AJ, Zermeno JP, et al. Variation in enamel thickness within the genus Homo[J]. Journal of Human Evolution, 2012,62:395-411
doi: 10.1016/j.jhevol.2011.12.004 URL pmid: 22361504 |
[12] |
Skinner MM, Alemseged Z, Gaunitz C, et al. Enamel thickness trends in Plio-Pleistocene hominin mandibular molars[J]. Journal of Human Evolution, 2015,85:35-45
URL pmid: 26024565 |
[13] | Schwartz GT. Taxonomic and functional aspects of enamel cap structure in South African plio-pleistocene hominids: a high resolution computed tomographic study[D]. Ph. D. Dissertation, Washington University, 1997, 1-22 |
[14] | Zhang LZ, Zhao LX. Enamel thickness of Gigantopithecus blacki and its significance for dietary adaptation and phylogeny[J]. Acta Anthropologica Sinica, 2013,32:365-376 |
[15] | Tafforeau P. Phylogenetic and functional aspects of tooth enamel microstructure and three-dimensional structure of modern and fossil primate molars[D]. Ph.D. Dissertation, Université de Montpellier II, 2004, 1-133 |
[16] | Olejniczak A. Micro-computed tomography of primate molars[D]. Ph. D. Dissertation, Stony Brook University, 2006, 1-194 |
[17] | Feeney RNM, Zermeno JP, Reid DJ, et al. Enamel thickness in Asian human canines and premolars[J]. Anthropological Science, 2010,118:191-198 |
[18] |
Benazzi S, Panetta D, Fornai C, et al. Technical Note: Guidelines for the digital computation of 2D and 3D enamel thickness in hominoid teeth[J]. American Journal of Physical Anthropology, 2014,153:305-313
doi: 10.1002/ajpa.22421 URL pmid: 24242830 |
[19] |
Benazzi S, Fornai C, Bayle P, et al. Comparison of dental measurement systems for taxonomic assignment of Neanderthal and modern human lower second deciduous molars[J]. Journal of Human Evolution, 2011,61:320-326
doi: 10.1016/j.jhevol.2011.04.008 URL pmid: 21624638 |
[20] |
Fiorenza L, Benazzi S, Tausch J, et al. Molar macrowear reveals Neanderthal eco-geographic dietary variation[J]. PLOS ONE, 2011,6:e14769
doi: 10.1371/journal.pone.0014769 URL pmid: 21445243 |
[21] |
Beaudet A, Dumoncel J, Thackeray F, et al. Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids[J]. Journal of Human Evolution, 2016,95:104-120
doi: 10.1016/j.jhevol.2016.04.004 URL pmid: 27260177 |
[22] |
Olejniczak A, Smith TM, Feeney RNM, et al. Dental tissue proportions and enamel thickness in Neandertal and modern human molars[J]. Journal of Human Evolution, 2008,55:12-23
URL pmid: 18321561 |
[23] |
Zanolli C. Brief communication: molar crown inner structural organization in Javanese Homo erectus[J]. American Journal of Physical Anthropology, 2015,156:148-157
doi: 10.1002/ajpa.22611 URL pmid: 25209431 |
[24] |
Kuman K, Clarke R. Stratigraphy, artefacts, industries and hominid associations for Sterkfontein, Member 5[J]. Journal of Human Evolution, 2000,38:827-847
URL pmid: 10835264 |
[25] | Balter V, Blichert-Toftv J, Braga J, et al. U-Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa[J]. Earth and Planetary Science Letters, 2008,267:236-246 |
[26] |
Rink WJ, Schwarcz HP, Smith FH, et al. ESR dates for Krapina hominids[J]. Nature, 1995,378:24
doi: 10.1038/378024a0 URL pmid: 7477281 |
[27] | Girard M. La brèche à “Machairodus” de Montmaurin(Pyrénées centrales)[J]. Bulletin de l’Association Française pour l’étude du Quaternaire, 1973,3:193-207 |
[28] |
Macchiarelli R, Bondioli L, Debénath A, et al. How Neanderthal molar teeth grew[J]. Nature, 2006,444:748-751
doi: 10.1038/nature05314 URL pmid: 17122777 |
[29] |
Pan L, Dumoncel J, de Beer F, et al. Further morphological evidence on South African earliest Homo lower postcanine dentition: enamel thickness and enamel dentine junction[J]. Journal of Human Evolution, 2016,96:82-96
URL pmid: 27343773 |
[30] |
Molnar S. Human tooth wear, tooth function and cultural variability[J]. American Journal of Physical Anthropology, 1971,34:175-189
doi: 10.1002/ajpa.1330340204 URL pmid: 5572602 |
[31] | Kono R. Molar enamel thickness and distribution patterns in extant great apes and humans, new insights based on a 3-dimensional whole crown perspective[J]. Anthropological Science, 2004,112:121-146 |
[32] |
Buti L, Le Cabec A, Panetta D, et al. 3D enamel thickness in Neandertal and modern human permanent canines[J]. Journal of Human Evolution, 2017,113:162-172
doi: 10.1016/j.jhevol.2017.08.009 URL pmid: 29054166 |
[33] |
Benazzi S, Slon V, Talamo S, et al. The makers of the Protoaurignacian and implications for Neandertal extinction[J]. Science, 2015,348:793-796
doi: 10.1126/science.aaa2773 URL pmid: 25908660 |
[34] |
Kono R, Suwa G, Tanijiri T. A three-dimensional analysis of enamel distribution patterns in human permanent first molars[J]. Archives of Oral Biology, 2002,47:867-875
doi: 10.1016/s0003-9969(02)00151-6 URL pmid: 12450518 |
[35] | Kono RT, Zhang Y, Jin C, et al. A 3-dimensional assessment of molar enamel thickness and distribution pattern in Gigantopithecus blacki[J]. Quaternary International, 2014,354:46-51 |
[36] |
Zanolli C, Pan L, Dumoncel J, et al. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden[J]. Journal of Human Evolution, 2018,116:1-13
doi: 10.1016/j.jhevol.2017.11.002 URL pmid: 29477178 |
[1] | PAN Lei, LIAO Wei, WANG Wei, LIU Jianhui, JI Xueping, YANG Xiaomei, HAO Yixin. Geometric morphometry of the enamel-dentine junction interface of Lufengpithecus hudienensis lower fourth premolars [J]. Acta Anthropologica Sinica, 2020, 39(04): 555-563. |
[2] | HU Rong, ZHAO Lingxia. CT Analysis on Enamel Thickness of Pleistocene Fossil Orangutan from Guangxi, South China [J]. Acta Anthropologica Sinica, 2015, 34(03): 404-416. |
[3] | ZHANG Li-zhao; ZHAO Ling-xia. Enamel thickness of Gigantopithecus blacki and its significance for dietary adaptation and phylogeny [J]. Acta Anthropologica Sinica, 2013, 32(03): 365-376. |
[4] | WANG Cui-bin; ZHAO Ling-xia; JIN Chang-zhu; HU Yao-wu; WANG Chang-sui. A comparative study on the tooth crown size of Pleistocene fossil orangutan from South China and its taxonomic implication [J]. Acta Anthropologica Sinica, 2009, 28(02): 192-200. |
[5] | WEI Miao; WANG Tao; ZHAO Cong-cang; CHEN Liang; WANG Chang-sui. Diet and oral hygiene of the people in aarly Qin Dynasty from the Xishan Site, Gansu Province [J]. Acta Anthropologica Sinica, 2009, 28(01): 45-56. |
[6] | Liu Wu, Zeng Xianglong. The dental morphology of the people of Zhanguo Period in Longxian, Shaanxi Province [J]. Acta Anthropologica Sinica, 1996, 15(04): 302-314. |
[7] | Liu Wu, Zeng Xianglong. The degeneration of third molars and its significance to human evolution [J]. Acta Anthropologica Sinica, 1996, 15(03): 185-199. |
[8] | Liu Wu. The dental morphology of the Neolithic humans in North China and its relationship with modern Chinese origin [J]. Acta Anthropologica Sinica, 1995, 14(04): 360-380. |
[9] | Liu Wu, Zhu Hong. The non-metric traits of human teeth from Miaozigou Neolithic Site [J]. Acta Anthropologica Sinica, 1995, 14(01): 8-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||