Acta Anthropologica Sinica ›› 2021, Vol. 40 ›› Issue (02): 292-306.doi: 10.16359/j.cnki.cn11-1963/q.2019.0044
• Literature Reviews • Previous Articles Next Articles
HUA Licheng1,2(), Peter S UNGAR2()
Received:
2017-12-13
Revised:
2019-07-11
Online:
2021-04-15
Published:
2021-04-13
Contact:
Peter S UNGAR
E-mail:hualicheng@nbu.edu.cn;Pungar@uark.edu
Supported by:
CLC Number:
HUA Licheng, Peter S UNGAR. Application of dental microwear in diets reconstruction[J]. Acta Anthropologica Sinica, 2021, 40(02): 292-306.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.cnki.cn11-1963/q.2019.0044
Fig.3 Length-scale analysis. The relative length of a depth transect across a surface depends on measurement scale (compare a and b). Transects can be taken at different orientations (c)[120]
[1] | Ungar PS. Teeth: A very short introduction[M]. Oxford: Oxford University, 2014 |
[2] | Ungar PS. Mammal Teeth: origin, evolution, and diversity[M]. Baltimore: Johns Hopkins University, 2010 |
[3] |
Ungar PS. Materials science: strong teeth, strong seeds[J]. Nature, 2008,452:703-705
doi: 10.1038/452703a URL pmid: 18401397 |
[4] | Kaiser TM, Schulz E. Tooth wear gradients in zebras as an environmental proxy — a pilot study[J]. Mitt. Hambg. Zool. Mus. Inst, 2006,103:187-210 |
[5] |
Kubo MO, Yamada E, The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations[J]. PLOS One, 2014,9:e90745
doi: 10.1371/journal.pone.0090745 URL pmid: 24603896 |
[6] | Fortelius M, Solounias N. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets[J]. American Museum Novitates, 2000,3301:1-36 |
[7] |
Ungar PS, Sponheimer M. The diets of early hominins[J]. Science, 2011,334:190-193
doi: 10.1126/science.1207701 URL pmid: 21998380 |
[8] | Simpson GG. Mesozoic Mammalia, IV; the multituberculates as living animals[J]. American Journal of Science, 1926,11:228-250 |
[9] | Simpson GG. Paleobiology of Jurassic mammals[J]. Paleobiologica 1933,5:127-158 |
[10] | Butler PM. The milk molars of Perissodactyla, with remarks on molar occlusion[J]. Proceedings of Zoological Society London, 1952,121:777-817 |
[11] | Mills JRE. Ideal dental occlusion in primates[J]. Dental Practice, 1955,6:47-51. |
[12] |
Baker G, Jones LHP, Wardrop ID. Cause of wear in sheep teeth[J]. Nature 1959,184:1583-1584
URL pmid: 13795990 |
[13] |
Rabenold D, Pearson OM. Scratching the surface: a critique of Lucas et al. (2013)’s conclusion that phytoliths do not abrade enamel[J]. Journal of Human Evolution, 2014,74:130-133
doi: 10.1016/j.jhevol.2014.02.001 URL pmid: 24613598 |
[14] | Rensberger JM. Scanning electron microscopy and occlusal events in some small herbivores[A]. In: Butler PM, Joysey KA (Eds.). Development, Function, and Evolution of Teeth[M]. Salt Lake City: American Academic Press, 1978, 415-438 |
[15] | Grine FE. Analysis of early hominid deciduous molar wear by scanning electron microscopy: A preliminary report[J]. Proceeding Electron Microscopy Society South Africa, 1977,7:157-158 |
[16] | Grine FE. Trophic differences between ‘gracile’ and ‘robust’ australopithecines: a scanning electron microcope analysis of occlusal events[J]. South Africa Journal of Science, 1981,77:203-230 |
[17] | Grine FE. Dental evidence for dietary differences in Australopithecus and Paranthropus: A quantitative analysis of permanent molar microwear[J]. Journal of Human Evolution, 1986,15:783-822 |
[18] | Puech PF, Prone A. Mechanical process of dental wearing down by abrasion, reproduced by experimentation and applied to fossil man and his paleoecological surroundings[J]. Comptes Rendus Hebdomadaires Seances Academic Science Series D 1979,289:895 |
[19] | Puech PF, Prone A, Albertini H. Mechanical process of dental surface alteration by non-abrasive and non-adhesive friction, reproduced by experimentation and applied to the diet of early man[J]. Comptes Rendus Academic Sciences Series II 1981,293:729-734 |
[20] | Puech PF, Albertini H, Serratrice C. Tooth microwear and dietary patterns in early hominids from Laetoli, Hadar and Olduvai[J]. Journal of Human Evolution, 1983,12:721-729 |
[21] | Walker A. Dietary hypotheses and human evolution[J]. Philosophical Transactions Royal Society London Series B—Biology Sciences, 1981,292:57-64 |
[22] | Ryan AS. Anterior Dental Microwear in Hominid Evolution: Comparisons with Human and Nonhuman Primates[M]. Ann Arbor: University of Michigan, 1980 |
[23] | Ryan AS, Johanson DC. Anterior dental microwear in Australopithecus afarensis: Comparisons with human and nonhuman primates[J]. Journal of Human Evolution, 1989,18:235-268 |
[24] |
Covert HH, Kay RF. Dental microwear and diet: implications for determining the feeding behaviors of extinct primates, with a comment on the dietary pattern of Sivapithecus[J]. American Journal of Physical Anthropology, 1981,55:331-336
doi: 10.1002/ajpa.1330550307 URL pmid: 6267943 |
[25] | Peters CR. Electron-optical microscopic study of incipient dental microdamage from experimental seed and bone crushing[J]. American Journal of Physical Anthropology, 1982,57:283-301 |
[26] |
Teaford MF, Walker A. Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus[J]. American Journal of Physical Anthropology, 1984,64:191-200
doi: 10.1002/ajpa.1330640213 URL pmid: 6380302 |
[27] |
Maas MC. A scanning electron microscopic study of in vitro abrasion of mammalian tooth enamel under compressive loads[J]. Archives of Oral Biology, 1994,39:1-11
doi: 10.1016/0003-9969(94)90028-0 URL pmid: 8179503 |
[28] |
Gügel IL, Grupe G, Kunzelmann KH. Simulation of dental microwear: characteristic traces by opal phytoliths give clues to ancient human dietary behavior[J]. American Journal of Physical Anthropology, 2001,114:124-138
URL pmid: 11169902 |
[29] |
Hua LC, Brandt ET, Meullenet JF, et al. Technical note: an in vitro study of dental microwear formation using the BITE Master II chewing machine[J]. American Journal of Physical Anthropology, 2015,158:769-775
doi: 10.1002/ajpa.22823 URL pmid: 26767349 |
[30] |
Daegling DJ, Hua LC, Ungar PS. The role of food stiffness in dental microwear feature formation[J]. Archives of Oral Biology, 2016,71:16-23
URL pmid: 27376762 |
[31] | Xia J, Zheng J, Huang DD, et al. New model to explain tooth wear with implications for microwear formation and diet reconstruction[J]. Proceedings of the National Academy of Sciences of the USA, 2015,112:10 669-10 672. |
[32] | Xia J, Tian ZR, Hua LC, et al. Enamel crystallite strength and wear: nanoscale responses of teeth to chewing loads[J]. Jouranl of the Royal Society Interface, 2017,14:20170456 |
[33] | Liem KF, Kaufman LS. Intraspecific macroevolution: Functional biology of the polymorphic cichlid species Cichlasoma minckleyi[A]. In: Echelle AA, Kornfield I (Eds.). Evolution of Species Flocks[M]. Orono: University of Maine Orono, 1984 |
[34] | Ungar PS. Tooth form and function: Insights into adaptation through analysis of dental microwear[A]. In: Koppe T, Meye G, Alt KW (Eds.). Comparative Dental Morphology[M]. Basel: Karger Press, 2009, 38-43 |
[35] |
Ungar PS, M’Kirera F. A solution to the worn tooth conundrum in primate functional anatomy[J]. Proceedings of the National Academy of Sciences of the USA, 2003,100:3874-3877
URL pmid: 12634426 |
[36] | Butler PM. Evolution and mammalian dental morphology[J]. Journal of Biologie Buccale, 1983,11:285-302 |
[37] | Rensberger JM. Occlusion model for mastication and dental wear in herbivorous mammals[J]. Journal of Paleontology, 1973,47, 515-528 |
[38] | Fortelius M, Solounias N. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets[J]. American Museum Novitates, 2000,3301:1-36 |
[39] |
Teaford MF, Walker A. Dental microwear in adult and still-born guinea pigs (Cavia porcellus)[J]. Archives of Oral Biology, 1983,28:1077-1081
doi: 10.1016/0003-9969(83)90067-5 URL pmid: 6581764 |
[40] | Fortelius M. Ungulate cheek teeth: developmental, functional and evolutionary interrelations[J]. Acta Zoology Fennici, 1985,180:1-76 |
[41] | Cuvier GB. Essay on the Theory of the Earth (Second edition)[M]. Translator: Jameson P. Lodon: William Blackwood, John Murray and Robert Baldwin Press, 1815 |
[42] |
King SJ, Arrigo-Nelson SJ, Pochron ST, et al. Dental senescence in a long-lived primate links infant survival to rainfall[J]. Proceedings of the National Academy of Sciences of the USA, 2005,102:16579-16583
doi: 10.1073/pnas.0508377102 URL pmid: 16260727 |
[43] | Popowics TE, Herring SW. Teeth, jaws and muscles in mammalian mastication[A]. In: Bels V (Ed.). Feeding in Domestic Vertebrates[M]. Oxford: CABI, 2006, 61-83 |
[44] | Maas MC, Dumont ER. Built to last: The structure, function, and evolution of primate dental enamel[J]. Evolution Anthropology, 1999,8:133-152 |
[45] | Braly A, Darnell LA, Mann AB, et al. The effect of prism orientation on the indentation testing of human molar enamel[J]. Archives Oral Biology, 2007,52:856-860 |
[46] | Cuy JL, Mann AB, Livi KJ, et al. Nanoindentation mapping of the mechanical properties of human molar tooth enamel[J]. Archives Oral Biology, 2002,47:281-291 |
[47] |
Lee JJ, Morris D, Constantino PJ, et al. Properties of tooth enamel in great apes[J]. Acta Biomaterialia, 2010,6:4560-4565
URL pmid: 20656077 |
[48] |
Darnell LA, Teaford MF, Livi KJ, Weihs TP. Variations in the mechanical properties of Alouatta palliata molar enamel[J]. American Journal of Physical Anthropology, 2010,141:7-15
doi: 10.1002/ajpa.21126 URL pmid: 19672851 |
[49] |
Shimizu D, Macho GA, Spears IR. Effect of prism orientation and loading direction on contact stresses in prismatic enamel of primates: implications for interpreting wear patterns[J]. American Journal of Physical Anthropology, 2005,126:427-434
URL pmid: 15386229 |
[50] |
Boyde A. Dependence of rate of physical erosion on orientation and density in mineralized tissues[J]. Anatomy & Embryology, 1984,170:57-62
doi: 10.1007/BF00319458 URL pmid: 6476409 |
[51] |
Maas MC, A scanning electron microscopic study of in vitro abrasion of mammalian tooth enamel under compressive loads[J]. Archives of Oral Biology, 1994,39:1-11
doi: 10.1016/0003-9969(94)90028-0 URL pmid: 8179503 |
[52] | Kovalevsky W. Sur l’Anchitherium aurelianense Cuv. et sur l’histoire pale´ontologique des chevaux[J]. Mem. Acad. Imp. Sci. St. Petersbg., Ser, 1873,7:1-73 |
[53] | Osborn HF. The Age of Mammals: In Europe, Asia, and North America[M]. New York: The Macmillan Company, 1910 |
[54] | Merriam JC. Tertiary vertebrate fauna from the cedar mountain region of western Nevada[M]. Berkeley: University of California, 1916, 161-198 |
[55] | Matthew WD. The evolution of the horse: a record and its interpretation[J]. Quarterly of Review of Biology, 1926,1:139-185 |
[56] | Piperno DR. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists[M]. Oxford: Alta Mira, 2006 |
[57] | McNaughton SJ, Tarrants JL, McNaughton MM, et al. Silica as a defense against herbivory and a growth promotor in African grasses[J]. Ecology, 1985,66:528-535 |
[58] |
Mcnaughton SJ, Tarrants JL. Grass leaf silicification: natural-selection for an inducible defense against herbivores[J]. Proceedings of the National Academy of Sciences of the USA, 1983,80:790-791
doi: 10.1073/pnas.80.3.790 URL pmid: 16578767 |
[59] | Galimuhtasib HU, Smith CC, Higgins JJ. The effect of silica in grasses on the feeding-behavior of the prairie vole, Microtus ochrogaster[J]. Ecology 1992,73:1724-1729 |
[60] |
Vicari M, Bazely DR. Do grasses fight back: the case for antiherbivore defences[J]. Trends in Ecology & Evolution, 1993,8:137-141
doi: 10.1016/0169-5347(93)90026-L URL pmid: 21236130 |
[61] | Massey FP, Hartley SE. Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates[J]. Proceeding Biological Sciences, 2006,273:2299-2304 |
[62] |
Massey FP, Ennos AR, Hartley SE. Herbivore specific induction of silica-based plant defences[J]. Oecologia, 2007,152:677-683
doi: 10.1007/s00442-007-0703-5 URL pmid: 17375331 |
[63] | Fox CL, Perezperez A, Juan J. Dietary information through the examination of plant phytoliths on the enamel surface of human dentition[J]. Journal of Archaeology Sciences, 1994,21:29-34 |
[64] | Fox CL, Juan J, Albert RM. Phytolith analysis on dental calculus, enamel surface, and burial soil: Information about diet and paleoenvironment[J]. American Journal of Physical Anthropology, 1996,101:101-113 |
[65] |
Gügel IL, Grupe G, Kunzelmann KH. Simulation of dental microwear: characteristic traces by opal phytoliths give clues to ancient human dietary behavior[J]. American Journal of Physical Anthropology, 2001,114:124-138
doi: 10.1002/1096-8644(200102)114:2<124::AID-AJPA1012>3.0.CO;2-S URL pmid: 11169902 |
[66] |
Rabenold D, Pearson OM. Abrasive, silica phytoliths and the evolution of thick molar enamel in primates, with implications for the diet of Paranthropus boisei[J]. PLOS One, 2011,6:e28379
doi: 10.1371/journal.pone.0028379 URL pmid: 22163299 |
[67] |
Kubo MO, Yamada E. The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant Sika deer populations[J]. PLOS One, 2014,9:e90745.
doi: 10.1371/journal.pone.0090745 URL pmid: 24603896 |
[68] |
MacFadden BJ, Cerling TE. Fossil horses, carbon isotopes and global change[J]. Trends in Ecology & Evolution, 1994,9:481-486.
doi: 10.1016/0169-5347(94)90313-1 URL pmid: 21236927 |
[69] |
MacFadden BJ. Origin and evolution of the grazing guild in new world terrestrial mammals[J]. Trends in Ecology & Evolution, 1997,12:182-187
URL pmid: 21238029 |
[70] | Strömberg CAE. The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2002,177:59-75 |
[71] | Strömberg CAE. Evolution of hypsodonty in equids: testing a hypojournal of adaptation[J]. Paleobiology, 2006,32:236-258 |
[72] | Axmacher H, Hofmann RR. Morphological characteristics of the masseter muscle of 22 ruminant species[J]. Journal of Zoology, 1988,215:463-473 |
[73] | Sanson GD, Kerr SA, Gross KA. So silica phytoliths really wear mammalian teeth[J]. Journal of Archaeology Sciences, 2007,34:526-531 |
[74] |
Baker G, Jones LHP, Wardrop ID. Cause of wear in sheeps teeth[J]. Nature 1959,184:1583-1584
doi: 10.1038/1841583b0 URL pmid: 13795990 |
[75] | Erickson KL. Prarie grass phytolith hardness and the evolution of ungulate hypsodonty[J]. Historical Biology, 2014,26:737-744 |
[76] | Lucas PW, Omar R, Al-Fadhalah K, et al. Mechanisms and causes of wear in tooth enamel: implications for hominin diets[J]. Journal of Royal Society Interface, 2013,10:20120923 |
[77] | Janis CM, Fortelius M. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors[J]. Biology Review, 1988,63:197-230 |
[78] | Fortelius M, Eronen J, Jernvall J, et al. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years[J]. Evolutionary Ecology Research, 2002,4:1005-1016 |
[79] | Massey FP, Hartley SE. Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates[J]. Proceeding Biology Sciences, 2006,273:2299-2304 |
[80] | Hunt JW, Dean AP, Webster RE, et al. A novel mechanism by which silica defends grasses against herbivory[J]. Annales Botanici, 2008,102:653-656 |
[81] | Lucas PW, van Casteren A, Al-Fadhalah K, et al. The role of dust, grit and phytoliths in tooth wear[J]. Annales Zoologici Fennici, 2014,51:143-152 |
[82] | Teaford MF, Oyen OJ. In vivo and in vitro turnover in dental microwear[J]. American Journal of Physical Anthropology, 1988,75:279 |
[83] | Grine FE. Dental evidence for dietary differences in Australopithecus and Paranthropus: A quantitative analysis of permanent molar microwear[J]. Journal of Human Evolution, 1986,15:783-822 |
[84] |
Scott RS, Ungar PS, Bergstrom TS, et al. Dental microwear texture analysis shows within-species diet variability in fossil hominins[J]. Nature, 2005,436:693-695
URL pmid: 16079844 |
[85] |
Ungar PS, Grine FE, Teaford MF. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei[J]. PLoS ONE, 2008,3:e2044
doi: 10.1371/journal.pone.0002044 URL pmid: 18446200 |
[86] | Ungar PS, Scott RS, Grine FE, et al. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis[J]. Philosophical Transactions Royal Society London Series B, 2010,365:3345-3354 |
[87] | Ungar PS, Krueger KL, Blumenschine RJ, et al. Dental microwear texture analysis of hominins recovered by the olduvai landscape paleoanthropology project, 1995-2007[J]. Journal of Human Evolution, 2011,63:429-437 |
[88] | Grine FE, Ungar PS, Teaford MF. Was the early Pliocene hominin Australopithecus anamensis a hard object feeder[J]. South African Journal of Science, 2006,102:301-310 |
[89] |
Strait DS, et al. The feeding biomechanics and dietary ecology of Australopithecus africanus[J]. Proceedings of the National Academy of Sciences of the USA, 2009,106:2124-2129
doi: 10.1073/pnas.0808730106 URL pmid: 19188607 |
[90] |
Teaford MF, Runestad JA. Dental microwear and diet in venezuelan primates[J]. American Journal of Physical Anthropology, 1992,88:347-364
doi: 10.1002/ajpa.1330880308 URL pmid: 1642321 |
[91] | Chiu LW, Schmidt CW, Mahoney P, et al. Dental microwear texture analysis of Bronze and Iron Age agriculturalists from England[J]. American Journal of Physical Anthropology, 2012,54:115 |
[92] | Frazer L. Dental microwear texture analysis of Early to Middle Woodland and Mississippian populations from Indiana[M]. Indianapolis: University of Indianapolis, 2012 |
[93] |
El Zaatari S, Grine FE, Ungar PS, et al. Neandertal versus modern human dietary responses to climate fluctuations[J]. PLoS One, 2016,11(4): e0153277
doi: 10.1371/journal.pone.0153277 URL pmid: 27119336 |
[94] |
El Zaatari S and Hublin JJ. Diet of upper Paleolithic modern humans: evidence from microwear texture analysis[J]. American Journal of Physical Anthropology, 2014,153:570-578
URL pmid: 24449141 |
[95] | Van Sessen R, Schmidt CW, Sheridan S, et al. Dental microwear texture analysis at Tell Dothan[J]. American Journal of Physical Anthropology, 2013,56:276 |
[96] | Schmidt CW, Beach JJ, McKinley JI, et al. Distinguishing dietary indicators of pastoralists and agriculturists via dental microwear texture analysis[J]. Surface Topography Metrology & Properties, 2016,4:014008 |
[97] | Butler PM. The milk molars of perissodactyla, with remarks on molar occlusion[J]. Proceedings of the Zoological Society of London, 1952,121:777-817 |
[98] | Mills JRE. Ideal dental occlusion in the primates[J]. Dental Practice, 1955,6:47-61 |
[99] | Mills JRE. Occlusion and malocclusion of the teeth of primates[A]. In: Brothwell DR (Ed.). Dental Anthropology[M]. Oxford: Pergamon Press, 1963, 29-52 |
[100] | Dahlberg AA, Kinzey WG. Etude microscopique de l’abrasion et de l’attrition sur la surface des dents[J]. Bulletin du Groupement International pour la Recherche Scientifique en Stomatologie & Odontologie, 1962,5:242-251 |
[101] | Fine D, Craig GT. Buccal surface wear of human premolar and molar teeth: A potential indicator of dietary and social differentiation[J]. Journal of Human Evolution, 1981,10:335-344 |
[102] |
Gordon KD. A study of microwear on chimpanzee molars: implications for dental microwear analysis[J]. American Journal of Physical Anthropology, 1982,59:195-215
doi: 10.1002/ajpa.1330590208 URL pmid: 7149017 |
[103] |
Gordon KD. Hominoid dental microwear: complications in the use of microwear analysis to detect diet[J]. Journal of Dental Research, 1984,63:1043-1046
doi: 10.1177/00220345840630080601 URL pmid: 6589263 |
[104] |
Gordon KD. The assessment of jaw movement direction from dental microwear[J]. American Journal of Physical Anthropology, 1984,63:77-84
doi: 10.1002/ajpa.1330630110 URL pmid: 6703036 |
[105] |
Teaford MF, Walker A. Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of sivapithecus[J]. American Journal of Physical Anthropology, 1984,64:191-200
doi: 10.1002/ajpa.1330640213 URL pmid: 6380302 |
[106] |
Teaford MF. Molar microwear and diet in the genus cebus[J]. American Journal of Physical Anthropology, 1985,66:363-370
doi: 10.1002/ajpa.1330660403 URL pmid: 3993762 |
[107] | Solounias N, Dawson-Saunders B. Dietary adaptations and paleoecology of the late miocene ruminants from pikermi and samos in greece[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1988,65:149-172 |
[108] | Young WG, Robson SK. Jaw movement from microwear on the molar teeth of the koala phascolarctos cinereus[J]. Journal of Zoology, 1987,213:51-61 |
[109] |
Kay RF. Analysis of primate dental microwear using image processing techniques[J]. Scanning Microscopy, 1987,1:657-662
URL pmid: 3616563 |
[110] |
Grine FE, Kay RF. Early hominid diets from quantitative image analysis of dental microwear[J]. Nature, 1988,333:765-768
URL pmid: 3133564 |
[111] | Kay RF, Grine FE. Tooth morphology, wear and diet in australopithecus and paranthropus from southern africa[A]. In: Grine EF (Ed.). Evolutionary History of the Robust Australopithecines[M]. New York: Aldine de Gruyter, 1988, 427-444 |
[112] |
Evans AR, Sanson GD. Spatial and functional modeling of carnivore and insectivore molariform teeth[J]. Journal of Morphology, 2006,267:649-662
doi: 10.1002/jmor.10285 URL pmid: 15570595 |
[113] |
Ungar PS, M’Kirera F. A solution to the worn tooth conundrum in primate functional anatomy[J]. Proceedings of the National Academy of Sciences of the USA, 2003,100:3874-3877
URL pmid: 12634426 |
[114] |
King SJ, Arrigo-Nelson SJ, Pochron ST, et al. Dental senescence in a long-lived primate links infant survival to rainfall[J]. Proceedings of the National Academy of Sciences of the USA, 2005,102:16579-16583
doi: 10.1073/pnas.0508377102 URL pmid: 16260727 |
[115] |
Kay RF. Functional adaptations of primate molar teeth[J]. American Journal of Physical Anthropology, 1975,43:195-215
URL pmid: 810034 |
[116] | Ungar PS, Williamson M. Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis[J]. Palaeoecology, 2000,3:1-18 |
[117] | Seligsohn D, Szalay FS. Relationship between natural selection and dental morphology: Tooth function and diet in Lepilemur and Hapalemur[A] In: Butler PM, Joysey KA (Eds.). Development, Function and Evolution of Teeth[M]. Salt Lake City: American Academic Press, 1978, 289-307 |
[118] |
Kay RF. Functional adaptations of primate molar teeth[J]. American Journal of Physical Anthropology, 1975,43:195-215
doi: 10.1002/ajpa.1330430207 URL pmid: 810034 |
[119] |
Ungar PS, Brown CA, Bergstrom TS, et al, Quantification of dental microwear by tandem scanning confocal microscopy and scalesensitive fractal analyses[J]. Scanning, 2003,25:185-193
URL pmid: 12926610 |
[120] |
Scott RS, Ungar PS, Bergstrom TS, et al. Dental microwear texture analysis: technical considerations[J]. Journal of Human Evolution, 2006,51:339-349
doi: 10.1016/j.jhevol.2006.04.006 URL pmid: 16908052 |
[121] | Solounias N, Semprebon G. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids[J]. American Museum Novitates, 2002,3366:1-49 |
[122] | Merceron G, Blondel C, Brunet M, et al. The Late Miocene paleoenvironment of Afghanistan as inferred from dental microwear in artiodactyls[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004,207:143-163 |
[123] |
Grine FE, Ungar PS, Teaford MF. Error rates in dental microwear quantification using scanning electron microscopy[J]. Scanning, 2002,24:144-153
doi: 10.1002/sca.4950240307 URL pmid: 12074496 |
[124] | Brown CA, Siegmann S. Fundamental scales of adhesion and areascale fractal analysis[J]. International Journal of Machine Tools & Manufacture, 2001,41, 1927-1933 |
[125] |
Articus K, Brown CA, Wilhelm KP. Scale-sensitive fractal analysis using the patchwork method for the assessment of skin roughness[J]. Skin Research and Technology, 2001,7:164-167
doi: 10.1034/j.1600-0846.2001.70304.x URL pmid: 11554702 |
[126] | Pedreschi F, Aguilera JM, Brown CA. Characterization of food surfaces using scale-sensitive fractal analysis[J]. J. Food Process. Eng, 2000,23:127-143 |
[127] | Ungar PS, Scott RS, Scott JR, et al. Dental microwear analysis: historical perspectives and new approaches[A]. In: Irish JD, Nelson GC (Eds.). Dental Anthropology[M]. Cambridge: Cambridge University, 2007 |
[128] |
Purnell MA, Crumpton N, Gill PG, et al. Withinguild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals[J]. Journal of Zoology, 2013,291:249-257
doi: 10.1111/jzo.12068 URL pmid: 25620853 |
[129] |
Schulz E, Piotrowski V, Clauss M, et al. Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits[J]. PLOS One, 2013,8:e56167
doi: 10.1371/journal.pone.0056167 URL pmid: 23405263 |
[130] | Withnell CB, Ungar PS. A preliminary analysis of dental microwear as a proxy for diet and habitat in shrews[J]. Mammalia, 2014,78:409-415 |
[131] | Ungar PS, Merceron G, Scott RS. Dental microwear texture analysis of Varswater bovids and early Pliocene paleoenvironments of Langebaanweg, Western Cape Province, South Africa[J]. Journal of Mammalia Evolution, 2007,14:163-181 |
[132] | Scott JR. Dental microwear texture analysis of extant African Bovidae[J]. Mammalia, 2012,76:157-174 |
[133] | Ungar PS, Scott JR, McNulty KP, et al. Environments of early Miocene Rusinga Island and Songhor: evidence from the dental microwear of tragulids[J]. American Journal of Physical Anthropology, 2012,147:289-290 |
[134] |
Donohue SL, DeSantis LRG, Schubert BW, et al. Was the giant short-faced bear a hyper-xcavenger? A new approach to the dietary study of ursids using dental microwear textures[J]. PLOS One, 2013,8
doi: 10.1371/journal.pone.0085857 URL pmid: 24392031 |
[135] | Haupt RJ, DeSantis LRG, Green JL, et al. Dental microwear texture as a proxy for diet in xenarthrans[J]. Journal of Mammalia, 2013,94:856-866 |
[136] | Schubert BW, Ungar PS, DeSantis LRG. Carnassial microwear and dietary behaviour in large carnivorans[J]. Journal of Zoology, 2010,280:257-263 |
[137] | Ungar PS, Scott JR, Schubert BW, et al. Carnivoran dental microwear textures: Comparability of carnassial facets and functional differentiation of postcanine teeth[J]. Mammalia, 2010,74:219-224 |
[138] | Desantis LR, Schubert BW, Scott JR, et al. Times not so tough at La Brea: Dental microwear texture analysis clarifies the feeding behavior of the saber-toothed cat, Smilodon Fatalis, and american lion, Panthera atrox[J]. Journal of Vertebrate Paleontology, 2012,32:86-87 |
[139] | Stynder DD, Ungar PS, Scott JR, et al. A dental microwear texture analysis of the Mio-Pliocene hyaenids from Langebaanweg, South Africa[J]. Acta Palaeontologica Polonica, 2012,57:485-496 |
[140] |
Prideaux GJ, Ayliffe LK, DeSantis LRG, et al. Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo[J]. Proceedings of the National Academy of Sciences of the USA, 2009,106:11646-11650
doi: 10.1073/pnas.0900956106 URL pmid: 19556539 |
[141] | Ungar PS. Mammalian dental function and wear: A review[J]. Biosurface & Biotribology, 2015,1(1): 25-41 |
[142] | Solounias N, Semprebon G. Advances in the Reconstruction of Ungulate Ecomorphology with Application to Early Fossil Equids[J]. American Museum Novitates, 2002,3366(Jan 2002): 1-49 |
[143] | Dong M, Zhang Y, Zhang J, et al. Cold and/or wet early holocene in shijiazhuang district: evidences from tooth microwear and stable isotope analyses[J]. Quaternary Sciences, 2014,34, 8-15 |
[144] | 龚宴欣. 植食性哺乳动物牙齿磨痕分析方法简介及其在古食性恢复中的应用前景[J]. 古生物学报, 2017(1): 117-128 |
[145] | Ungar PS. 进化的咬痕[M]. 北京: 新世界出版社, 2019 |
[1] | CHEN Xiaoying, YOU Haijie, SONG Meiling, GUO Mingxiao, XIAO Yuni, ZENG Wen. Oral health of prehistoric inhabitants from the Ganzao site, Guangxi [J]. Acta Anthropologica Sinica, 2023, 42(01): 98-109. |
[2] | LEI Shuai, GUO Yi. Human tooth and diet from a bioarcheological perspective [J]. Acta Anthropologica Sinica, 2022, 41(03): 501-513. |
[3] | YANG Shiyu, ZHANG Qun, WANG Long, ZHANG Quanchao. Dental microwear analysis of human teeth in Shengjindian cemetery, Turpan, Xinjiang [J]. Acta Anthropologica Sinica, 2022, 41(02): 218-225. |
[4] | YUAN Haibing, GU Wanfa, WEI Qingli, WU Qian, DING Lanpo, CAO Doudou. Analysis of dental caries in the Yangshao population at the Qingtai site, Zhengzhou city [J]. Acta Anthropologica Sinica, 2022, 41(02): 226-237. |
[5] | ZHANG Quanchao, SUN Yuze, HOU Liangliang, JI Ping, ZHU Yonggang. Carbon and nitrogen stable isotope analysis of the human and animal bones from the Haminmangha site [J]. Acta Anthropologica Sinica, 2022, 41(02): 261-273. |
[6] | ZHAO Dongyue, LÜ Zheng, ZHANG Zetao, LIU Bo, LING Xue, WAN Yang, YANG Fan. Analysis on the economic mode of the ancestors of Dayindong cave site in Yunnan province by stable isotope [J]. Acta Anthropologica Sinica, 2022, 41(02): 295-307. |
[7] | SHI Chongyang, GUO Yi. Discussion on the utilization of fishery resources by the ancestors of Tianluoshan and liangwangcheng sites based on the diet analysis [J]. Acta Anthropologica Sinica, 2022, 41(02): 308-318. |
[8] | CUI Tianxing, SONG Weiwei. Application review of the laser scanning confocal microscope in quantitative analysis of microwears [J]. Acta Anthropologica Sinica, 2022, 41(01): 180-192. |
[9] | XIONG Jianxue, CHEN Guoke, YIN Xing, MENG Hailiang, YANG Yishi, TAO Yichen, TAN Jingze, LI Hui, WEN Shaoqing. A study of maxillary sinusitis infections of the Han dynasty people from the Heishuiguo site [J]. Acta Anthropologica Sinica, 2021, 40(05): 776-786. |
[10] | ZHAO Hailong, TONG Guang, YAN Xiaomeng, YANG Miaoran, TAN Peiyang. Experimental analysis of the endscrapers’ function from the Xiabozhuang site in Nihewan Basin of Hebei province [J]. Acta Anthropologica Sinica, 2021, 40(04): 600-610. |
[11] | LI Haijun, CHEN Huimin, LIU Liming, LIU Linru. A review of tooth wear of children [J]. Acta Anthropologica Sinica, 2021, 40(04): 695-705. |
[12] | XU Zhe, MA Jiao, PEI Shuwen. Study on the relationship between environmental change and human evolution: Evidence from mammalian tooth enamel carbon and oxygen stable isotope analysis [J]. Acta Anthropologica Sinica, 2021, 40(03): 454-468. |
[13] | LEI Shuai, CHEN Liang, ZHAI Linlin. A study on the characteristics of prehistoric deciduous teeth of infants in Yuhuazhai village, Xi’an [J]. Acta Anthropologica Sinica, 2021, 40(02): 208-225. |
[14] | ZHOU Yawei, ZHANG Xiaoran, GU Wanfa. Teeth abrasion and health status of Yangshao culture residents in the Wanggou site, Zhengzhou [J]. Acta Anthropologica Sinica, 2021, 40(01): 49-62. |
[15] | ZHOU Ligang, HAN Zhaohui, SUN Lei, HU Guoqiang. Stable isotope analysis of human remains from the Songzhuang Eastern Zhou Cemetery in Qixian, Henan Province: An investigation on the diet of nobles and human sacrifices [J]. Acta Anthropologica Sinica, 2021, 40(01): 63-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||