Acta Anthropologica Sinica ›› 2022, Vol. 41 ›› Issue (02): 238-247.doi: 10.16359/j.1000-3193/AAS.2021.0014
• Research Articles • Previous Articles Next Articles
WEI Pianpian1,2,3(), ZHANG Quanchao4
Received:
2020-09-10
Revised:
2020-12-15
Online:
2022-04-15
Published:
2022-04-13
CLC Number:
WEI Pianpian, ZHANG Quanchao. Biomechanical comparison of the middle femur between the Tuchengzi agricultural people and the Jinggouzi nomadic people from Inner Mongolia[J]. Acta Anthropologica Sinica, 2022, 41(02): 238-247.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2021.0014
参数Property | 符号Symbol | 单位Unit | 定义Definition |
---|---|---|---|
骨密质面积 | Sc | mm2 | 压力/张力强度 |
横断面总面积 | St | mm2 | 总的截面面积 |
髓腔面积 | Sm | mm2 | 髓腔部分的面积 |
骨密质面积百分比 | Rct | % | (CA/TA)×100 |
前后侧截面惯性矩 | Ix | mm4 | 前后侧抗弯刚度 |
内外侧截面惯性矩 | Iy | mm4 | 内外侧抗弯刚度 |
最大截面惯性矩 | Imax | mm4 | 最大抗弯刚度 |
最小截面惯性矩 | Imin | mm4 | 最小抗弯刚度 |
极截面惯性矩 | J | mm4 | 抗扭转和平均抗弯刚度 |
Theta | θ | ° | 最大弯曲刚度的方位 |
前后侧截面抵抗矩 | Zx | mm3 | 前后侧抗弯强度 |
内外侧截面抵抗矩 | Zy | mm3 | 内外侧抗弯强度 |
最大截面抵抗矩 | Zmax | mm3 | 最大抗弯强度 |
最小截面抵抗矩 | Zmin | mm3 | 最小抗弯强度 |
极截面抵抗矩 | Zp | mm3 | 抗扭转和平均抗弯强度 |
Tab.1 Definition of cross-sectional geometry
参数Property | 符号Symbol | 单位Unit | 定义Definition |
---|---|---|---|
骨密质面积 | Sc | mm2 | 压力/张力强度 |
横断面总面积 | St | mm2 | 总的截面面积 |
髓腔面积 | Sm | mm2 | 髓腔部分的面积 |
骨密质面积百分比 | Rct | % | (CA/TA)×100 |
前后侧截面惯性矩 | Ix | mm4 | 前后侧抗弯刚度 |
内外侧截面惯性矩 | Iy | mm4 | 内外侧抗弯刚度 |
最大截面惯性矩 | Imax | mm4 | 最大抗弯刚度 |
最小截面惯性矩 | Imin | mm4 | 最小抗弯刚度 |
极截面惯性矩 | J | mm4 | 抗扭转和平均抗弯刚度 |
Theta | θ | ° | 最大弯曲刚度的方位 |
前后侧截面抵抗矩 | Zx | mm3 | 前后侧抗弯强度 |
内外侧截面抵抗矩 | Zy | mm3 | 内外侧抗弯强度 |
最大截面抵抗矩 | Zmax | mm3 | 最大抗弯强度 |
最小截面抵抗矩 | Zmin | mm3 | 最小抗弯强度 |
极截面抵抗矩 | Zp | mm3 | 抗扭转和平均抗弯强度 |
标准化的极截面惯性矩scaled J | 力学形状指数Ix/Iy | ||||||||
---|---|---|---|---|---|---|---|---|---|
性别 | 个体数/股骨数 | 均值 | 变异范围 | 变异系数 | 均值 | 变异范围 | 变异系数 | ||
HT | 78 | 0.0053(0.0008)a | 0.0035-0.0077 | 16.11 | 1.10(0.22) | 0.66-1.73 | 20.46 | ||
男 | 26/52 | 0.0054 (0.0008) | 0.0039-0.0077 | 15.08 | 1.15 (0.22) | 0.77-1.73 | 19.09 | ||
女 | 13/26 | 0.0050 (0.0008) | 0.0035-0.0069 | 17.06 | 0.99 (0.20) | 0.66-1.45 | 20.12 | ||
LJ | 34 | 0.0046(0.0009) | 0.0030-0.0064 | 18.57 | 1.05(0.22) | 0.72-1.54 | 21.14 | ||
男 | 8/16 | 0.0052 (0.0006) | 0.0043-0.0064 | 11.98 | 1.15 (0.21) | 0.90-1.54 | 18.64 | ||
女 | 9/18 | 0.0041 (0.0007) | 0.0030-0.0055 | 17.58 | 0.97 (0.22) | 0.72-1.32 | 20.25 |
Tab.2 Solid-section femora summary statistics of biomechanical robusticity (scaled J) and shape index (Ix/Iy)
标准化的极截面惯性矩scaled J | 力学形状指数Ix/Iy | ||||||||
---|---|---|---|---|---|---|---|---|---|
性别 | 个体数/股骨数 | 均值 | 变异范围 | 变异系数 | 均值 | 变异范围 | 变异系数 | ||
HT | 78 | 0.0053(0.0008)a | 0.0035-0.0077 | 16.11 | 1.10(0.22) | 0.66-1.73 | 20.46 | ||
男 | 26/52 | 0.0054 (0.0008) | 0.0039-0.0077 | 15.08 | 1.15 (0.22) | 0.77-1.73 | 19.09 | ||
女 | 13/26 | 0.0050 (0.0008) | 0.0035-0.0069 | 17.06 | 0.99 (0.20) | 0.66-1.45 | 20.12 | ||
LJ | 34 | 0.0046(0.0009) | 0.0030-0.0064 | 18.57 | 1.05(0.22) | 0.72-1.54 | 21.14 | ||
男 | 8/16 | 0.0052 (0.0006) | 0.0043-0.0064 | 11.98 | 1.15 (0.21) | 0.90-1.54 | 18.64 | ||
女 | 9/18 | 0.0041 (0.0007) | 0.0030-0.0055 | 17.58 | 0.97 (0.22) | 0.72-1.32 | 20.25 |
个体数 n | 均值 Mean | 变异范围 Range | 变异系数 Coefficients of variation | |
---|---|---|---|---|
HT | 39 | 0.0462(0.0369) | 0.0015-0.1507 | 79.80 |
男 | 26 | 0.0389 (0.0378)a | 0.0015-0.1507 | 97.19 |
女 | 13 | 0.0609 (0.0982) | 0.0053-0.4106 | 51.49 |
LJ | 17 | 0.0500(0.0240) | 0.0080-0.0907 | 47.85 |
男 | 8 | 0.0576 (0.0262) | 0.0080-0.0907 | 45.61 |
女 | 9 | 0.0434 (0.0538) | 0.0189-0.0867 | 48.25 |
Tab.3 Bilateral asymmetry of biomechanical robusticity (scaled J)
个体数 n | 均值 Mean | 变异范围 Range | 变异系数 Coefficients of variation | |
---|---|---|---|---|
HT | 39 | 0.0462(0.0369) | 0.0015-0.1507 | 79.80 |
男 | 26 | 0.0389 (0.0378)a | 0.0015-0.1507 | 97.19 |
女 | 13 | 0.0609 (0.0982) | 0.0053-0.4106 | 51.49 |
LJ | 17 | 0.0500(0.0240) | 0.0080-0.0907 | 47.85 |
男 | 8 | 0.0576 (0.0262) | 0.0080-0.0907 | 45.61 |
女 | 9 | 0.0434 (0.0538) | 0.0189-0.0867 | 48.25 |
Fig.1 Boxplot of femoral midshaft biomechanical robusticity (scaled J, left), and shape index (Ix/Iy, middle), and bilateral asymmetry of femoral midshaft biomechanical robusticity (scaled J, right)
LJ | HT女 | LJ男 | LJ女 | ||
---|---|---|---|---|---|
Scaled J | HT | 0.000a | |||
HT男 | 0.108 | 0.886 | <0.001 | ||
HT女 | 0.942 | 0.004 | |||
LJ男 | 0.001 | ||||
Ix/Iy | HT | 0.697 | |||
HT男 | 0.014 | 1.000 | 0.011 | ||
HT女 | 0.110 | 0.999 | |||
LJ男 | 0.066 | ||||
Raab | HT | 0.697 | |||
HT男 | 0.277 | 0.651 | 1.000 | ||
HT女 | 1.000 | 0.771 | |||
LJ男 | 0.937 |
Tab.4 Results of post hoc (ANOVA) comparisons of femoral CSG properties
LJ | HT女 | LJ男 | LJ女 | ||
---|---|---|---|---|---|
Scaled J | HT | 0.000a | |||
HT男 | 0.108 | 0.886 | <0.001 | ||
HT女 | 0.942 | 0.004 | |||
LJ男 | 0.001 | ||||
Ix/Iy | HT | 0.697 | |||
HT男 | 0.014 | 1.000 | 0.011 | ||
HT女 | 0.110 | 0.999 | |||
LJ男 | 0.066 | ||||
Raab | HT | 0.697 | |||
HT男 | 0.277 | 0.651 | 1.000 | ||
HT女 | 1.000 | 0.771 | |||
LJ男 | 0.937 |
[1] | Roux W. Der zuchtende Kampf der Teile, oder die ‘‘Teilauslee’’ im Organismus (Theorie der ‘‘funktionellen Anpassung’’)[M]. Leipzig: Wilhelm Engelmann, 1881 |
[2] | Wolff J. Das Gesetz der Transformation der Knochen[M]. Berlin: A. Hirchwild, 1892 |
[3] | Wolff J. The law of bone remodeling[M]. Berlin: Springer-Verlag, 1986 |
[4] | Roesler H. The history of some fundamental concepts in bone biomechanics. Journal of Biomechanics[J], 1987, 20:1025-1034 |
[5] | Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics[M]. New York: Springer, 1998 |
[6] | Cowin SC. The false premis in Wolff ’s law[A]. In: SC Cowin (Ed.). Bone biomechanics handbook (2nd edition)[M]. Boca Raton: CRC Press, 2001 |
[7] |
Ruff CB, Holt BH, Trinkaus E. Who’s afraid of the big bad Wolff? Wolff’s Law and bone functional adaptation[J]. American Journal of Physical Anthropology, 2006, 129:484-498
doi: 10.1002/(ISSN)1096-8644 URL |
[8] |
Lanyon E, Goodship AE, Pye CJ, et al. Mechanically adaptive bone remodeling[J]. Journal of Biomechanics, 1982, 15:141-154
pmid: 7096367 |
[9] |
Carter DR. Mechanical loading histories and cortical bone remodeling[J]. Calcified Tissue International, 1984, 36:19-24
doi: 10.1007/BF02405289 URL |
[10] |
Frost HM. Bone ‘‘mass’’ and the ‘‘mechanostat’’: a proposal[J]. Anatomical Record, 1987, 219:1-9
pmid: 3688455 |
[11] |
Turner CH. Three rules for bone adaptation to mechanical stimuli[J]. Bone, 1998, 23:399-407
pmid: 9823445 |
[12] |
Lieberman DE, Polk JD, Demes B. Predicting long bone loading from cross-sectional geometry[J]. American Journal of Physical Anthropology, 2004, 123:156-171
pmid: 14730649 |
[13] | Pearson OM, Lieberman DE. The aging of Wolff’s ‘‘law:’’ ontogeny and responses to mechanical loading in cortical bone[J]. Year book Physical Anthropology, 2004, 47:63-99 |
[14] | Ruff CB. Biomechanical analyses of archaeological human skeletons[A]. In: Katzenberg MA, Saunders SR (Eds.). Biological Anthropology of the Human Skeleton (2nd edition)[M]. Hoboken. New Jersey: John Wiley & Sons, Inc. 2008, 183-206 |
[15] | Martin R, Saller K. Lehrbuch der Anthropologie in systematischer Darstellung. Stuttgart: Gustav Fischer Verlag. 1959 |
[16] | Bräuer G. Anthropologie[A]. In: Knussman R (Ed.). Anthropologie[M]. Stuttgart: Fischer Verlag, 1988, 160-232 |
[17] |
Huiskes R. On the modelling of long bones in structural analyses[J]. Journal of Biomechanics, 1982, 15:65-69
pmid: 7061529 |
[18] |
Lovejoy CO, Burstein AH, Heiple KG. The biomechanical analysis of bone strength: a method and its application to platycnemia[J]. American Journal of Physical Anthropology, 1976, 44:489-506
pmid: 937526 |
[19] | Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae—a biomechanical investigation. I. Method and general patterns of variation[J]. American Physical Anthropology, 1983, 60:359-381 |
[20] | Ruff CB. Biomechanics of the hip and birth in early Homo[J]. American Journal of Physical Anthropological, 1995, 98:527-574 |
[21] |
Ruff CB. Long bone articular and diaphyseal structure in Old World monkeys and apes, I: locomotor effects[J]. American Journal of Physical Anthropology, 2002, 119:305-342
doi: 10.1002/(ISSN)1096-8644 URL |
[22] |
Ruff CB, Larsen CS, Hayes WC. Structural changes in the femur with the transition to agriculture on the Georgia coast[J]. American Journal of Physical Anthropology, 1984, 64:125-136
pmid: 6465303 |
[23] |
Stock JT, Pfeiffer SK. Long bone robusticity and subsistence behaviour among Later Stone Age foragers of the forest and fynbos biomes of South Africa[J]. Journal of Archaeological Science, 2004, 31(7):999-1013
doi: 10.1016/j.jas.2003.12.012 URL |
[24] | 李法军. 鲤鱼墩遗址史前人类行为模式的骨骼生物力学分析[J]. 人类学学报, 36(2):193-215 |
[25] | 何嘉宁. 军都山古代人群运动模式及生活方式的时序性变化[J]. 人类学学报, 35(2):238-245 |
[26] | 张全超. 内蒙古和林格尔县新店子墓地人骨研究[D]. 长春:吉林大学, 2005 |
[27] | 顾玉才. 内蒙古和林格尔县土城子遗址战国时期人骨研究[D]. 长春:吉林大学, 2007 |
[28] | 魏偏偏. 周口店田园洞古人类股骨形态功能分析[D]. 北京:中国科学院古脊椎动物与古人类研究所, 2016, 93-96 |
[29] |
Macintosh AA, Davies TG, Ryan TM, et al. Periosteal versus true cross-sectional geometry: A comparison along humeral, femoral, and tibial diaphysis[J]. American Journal of Physical Anthropology, 2013, 150:442-452
doi: 10.1002/ajpa.22218 pmid: 23359138 |
[30] |
Ruff CB, Scott WW, Liu AYC. Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults[J]. American Journal of Physical Anthropology, 1991, 86:397-413
pmid: 1746645 |
[31] |
Ruff CB, Holt BM, Niskanen M, et al. Stature and body mass estimation from skeletal remains in the European Holocene[J]. American Journal of Physical Anthropology, 2012, 148:601-617
doi: 10.1002/ajpa.22087 URL |
[32] |
McHenry HM. Body size and proportions in early Hominids[J]. American Journal of Physical Anthropology, 1992, 87:407-431
pmid: 1580350 |
[33] |
Grine FE, Jungers WL, Tobias PV, et al. Fossil Homo femur from Berg Aukas, northern Namibia[J]. American Journal of Physical Anthropology, 1995, 26:67-78
doi: 10.1002/(ISSN)1096-8644 URL |
[34] |
Auerbach BM, Ruff CB. Limb bone bilateral asymmetry: variability and commonality among modern humans[J]. Journal of Human Evolution, 2006, 50:203-218
doi: 10.1016/j.jhevol.2005.09.004 URL |
[35] |
Alexander G, Robling P, Felicia MH, et al. Improved Bone Structure and Strength After Long-Term Mechanical Loading is Greatest if Loading is Separated into Short Bouts[J]. Journal of Bone and Mineral Research, 2002, 17(8):1545-1554
pmid: 12162508 |
[1] | WEI Pianpian, ZHAO Yuhao, HE Jianing. Structural properties of humeral remains from Jianping, Liaoning province [J]. Acta Anthropologica Sinica, 2021, 40(06): 943-954. |
[2] | WEI Pianpian. Structural properties of the femoral remains from Lijiang, Yunnan province [J]. Acta Anthropologica Sinica, 2020, 39(04): 616-631. |
[3] | LI Fajun. Biomechanical features of the prehistoric people’s bones from South China [J]. Acta Anthropologica Sinica, 2020, 39(04): 599-615. |
[4] | HE Jianing. Temporal change of mobility and subsistence strategies in Jundushan Bronze Age pastoralists [J]. Acta Anthropologica Sinica, 2016, 35(02): 238-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||