Acta Anthropologica Sinica ›› 2024, Vol. 43 ›› Issue (02): 344-354.doi: 10.16359/j.1000-3193/AAS.2023.0055
• Reviews • Previous Articles
Received:
2023-02-27
Revised:
2023-07-27
Online:
2024-04-15
Published:
2024-04-02
CLC Number:
TAO Dawei, ZOU Huilin. Research progress and prospect of the ancient dental calculus residue[J]. Acta Anthropologica Sinica, 2024, 43(02): 344-354.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2023.0055
[1] |
Lieverse AR. Diet and the aetiology of dental calculus[J]. International Journal of Osteoarchaeology, 1999, 9: 219-232
doi: 10.1002/(ISSN)1099-1212 URL |
[2] |
Armitage PL. The extraction and identification of opal phytoliths from the teeth of Ungulates[J]. Journal of Archaeological Science, 1975, 2: 187-197
doi: 10.1016/0305-4403(75)90056-4 URL |
[3] | 陶大卫. 古代人类牙齿结石的生物考古学研究[J]. 华夏文明, 2017, 2: 30-34 |
[4] | 雷帅, 郭怡. 生物考古学视野下人类的牙齿与饮食[J]. 人类学学报, 2022, 41(3): 501-513 |
[5] | Hershkovitz I. The evolution of oral microbiota and the spread of dental diseases [A]. In: Greenblatt CL(Eds). Center for the study of emerging diseases[M]. Philadelphia: Jerusalem Balaban Publishers, 1998, 363-383 |
[6] |
Henry AG, Ungar PS, Passey BH, et al. The diet of Australopithecus sediba[J]. Nature, 2012, 487: 90-93
doi: 10.1038/nature11185 |
[7] |
Carbonell E, Bermúdez de Castro JM, Parés JM, et al. The first hominin of Europe[J]. Nature, 2008, 452: 465-469
doi: 10.1038/nature06815 |
[8] |
Hardy K, Radini A, Buckley S, et al. Diet and environment 1.2 million years ago revealed through analysis of dental calculus from Europe's oldest hominin at Sima del Elefante, Spain[J]. The Science of Nature, 2017, 104(2): 1-5
doi: 10.1007/s00114-016-1423-7 URL |
[9] | O’Connell JF. How did modern humans displace Neanderthals? Insights from hunter-gatherer ethnography and archaeology[A]. In: Conard NJ (Eds). When Neanderthals and Modern Humans Met[M]. Kerns Verlag, Tübingen, 2006, 43-64 |
[10] |
Richards MP, Pettitt PB, Stiner MC, et al. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic[J]. Proceedings of the National Academy of Sciences, 2001, 98(11): 6528-6532
doi: 10.1073/pnas.111155298 URL |
[11] |
Henry AG, Brooks AS, Piperno DR. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium)[J]. Proceedings of the National Academy of Sciences, 2011, 108(2): 486-491
doi: 10.1073/pnas.1016868108 URL |
[12] |
Henry AG, Brooks AS, Piperno DR. Plant foods and the dietary ecology of Neanderthals and early modern humans[J]. Journal of Human Evolution, 2014, 69: 44-54
doi: 10.1016/j.jhevol.2013.12.014 pmid: 24612646 |
[13] |
Weyrich LS, Duchene S, Soubrier J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus[J]. Nature, 2017, 544: 357-361
doi: 10.1038/nature21674 URL |
[14] | 赵志军. 中国农业起源概述[J]. 遗产与保护研究, 2019, 4(1): 1-7 |
[15] | 李小强. 农业的起源、传播与影响[J]. 人类学学报, 2022, 41(6): 1097-1108 |
[16] |
Jones M, Hunt H, Lightfoot E, et al. Food globalization in prehistory[J]. World Archaeology, 2011, 43 (4): 665-675
doi: 10.1080/00438243.2011.624764 URL |
[17] |
Cristiani E, Radini A, Edinborough M, et al. Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods[J]. Proceedings of the National Academy of Sciences, 2016, 113 (37): 10298-10303
doi: 10.1073/pnas.1603477113 URL |
[18] |
Jovanovi´c J, Power RC, de Becdelièvre C, et al. Microbotanical evidence for the spread of cereal use during the Mesolithic-Neolithic transition in the Southeastern Europe (Danube Gorges): Data from dental calculus analysis[J]. Journal of Archaeological Science, 2021, 125: 105288
doi: 10.1016/j.jas.2020.105288 URL |
[19] |
Madella M, García-Granero JJ, Out WA, et al. Microbotanical evidence of domestic cereals in Africa 7000 years ago[J]. PLOS ONE, 2014, 9(10): e110177
doi: 10.1371/journal.pone.0110177 URL |
[20] |
Piperno DR, Dillehay TD. Starch grains on human teeth reveal early broad crop diet in Northern Peru[J]. Proceedings of the National Academy of Sciences, 2008, 105(50): 19622-19627
doi: 10.1073/pnas.0808752105 URL |
[21] |
Adair MJ, Duncan NA, Young DN, et al. Early maize (Zea mays) in the North American Central Plains: The microbotanical evidence[J]. American Antiquity, 2022, 87(2): 333-351
doi: 10.1017/aaq.2021.152 URL |
[22] |
Mickleburgh HL, Pagán-Jiménez JR. New insights into the consumption of maize and other food plants in the pre-Columbian Caribbean from starch grains trapped in human dental calculus[J]. Journal of Archaeological Science, 2012, 39: 2468-2478
doi: 10.1016/j.jas.2012.02.020 URL |
[23] |
Yang YM, Shevchenko A, Knaust A, et al. Proteomics evidence for kefir dairy in Early Bronze Age China[J]. Journal of Archaeological Science, 2014, 45: 178-186
doi: 10.1016/j.jas.2014.02.005 URL |
[24] |
Evershed RP, Payne S, Sherratt AG, et al. Earliest date for milk use in the Near East and Southeastern Europe linked to cattle herding[J]. Nature, 2008, 455: 528-531
doi: 10.1038/nature07180 |
[25] |
Smyth J, Evershed RP. Milking the megafauna: Using organic residue analysis to understand early farming practice[J]. Environmental Archaeology, 2016, 21(3): 214-229
doi: 10.1179/1749631414Y.0000000045 URL |
[26] |
Greenfield HJ, Arnold ER. ‘Go(a)t milk?’ New perspectives on the zooarchaeological evidence for the earliest intensification of dairying in south eastern Europe[J]. World Archaeology, 2015, 47(5): 792-818
doi: 10.1080/00438243.2015.1029076 URL |
[27] |
Mathieson I, Lazaridis I, Rohland N, et al. Genome-wide patterns of selection in 230 ancient Eurasians[J]. Nature, 2015, 528: 499-503
doi: 10.1038/nature16152 |
[28] |
Burger J, Link V, Blöcher J, et al. Low prevalence of lactase persistence in Bronze Age Europe indicates ongoing strong selection over the last 3,000 years[J]. Current Biology, 2020, 30(21): 4307-4315
doi: 10.1016/j.cub.2020.08.033 URL |
[29] |
Geber J, Tromp M, Scott A, et al. Relief food subsistence revealed by microparticle and proteomic analyses of dental calculus from victims of the Great Irish Famine[J]. Proceedings of the National Academy of Sciences, 2019, 116 (39): 19380-19385
doi: 10.1073/pnas.1908839116 URL |
[30] | Hendy J, Warinner C, Bouwman A, et al. Proteomic evidence of dietary sources in ancient dental calculus[J]. Proceedings of the Royal Society, 2018, B285: 20180977 |
[31] |
Warinner C, Hendy J, Speller C, et al. Direct evidence of milk consumption from ancient human dental calculus[J]. Scientific Reports, 2014, 4: 7104
doi: 10.1038/srep07104 pmid: 25429530 |
[32] |
Charlton S, Ramsøe A, Collins M, et al. New insights into Neolithic milk consumption through proteomic analysis of dental calculus[J]. Archaeological and Anthropological Sciences, 2019, 11: 6183-6196
doi: 10.1007/s12520-019-00911-7 |
[33] | Wilkin S, Ventresca Miller A, Taylor WTT, et al. Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years[J]. Nature Ecology & Evolution, 2020, 4: 346-355 |
[34] | 莫林恒. 长江中下游地区史前鱼类遗存初步研究[J]. 南方文物, 2016, 4: 223-233 |
[35] |
Archer W, Braun DR. Investigating the signature of aquatic resource use within Pleistocene hominin dietary adaptations[J]. PLOS ONE, 2013, 8 (8): e69899
doi: 10.1371/journal.pone.0069899 URL |
[36] |
Mannino MA, Thomas KD, Leng MJ, et al. Stuck to the shore? Investigating prehistoric hunter-gatherer subsistence, mobility and territoriality in a Mediterranean coastal landscape through isotope analyses on marine mollusc shell carbonates and human bone collagen[J]. Quaternary International, 2011, 244: 88-104
doi: 10.1016/j.quaint.2011.05.044 URL |
[37] |
Evershed RP. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics[J]. World Archaeology, 2008, 40(1): 26-47
doi: 10.1080/00438240801889373 URL |
[38] |
Cristiani E, Radini A, Borić D, et al. Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean[J]. Scientific Reports, 2018, 8: 8147
doi: 10.1038/s41598-018-26045-9 pmid: 29802341 |
[39] | Tushingham S, Eerkens JW. Hunter-gatherer tobacco smoking in ancient North America:current chemical evidence and a framework for future studies[A]. In: Bollwerk EA, Tushingham S (Eds). Perspectives on the archaeology of pipes, tobacco and other smoke plants in the Ancient Americas[M]. Springer, New York 2016: 211-230 |
[40] |
Carmody S, Davis J, Tadi S, et al. Evidence of tobacco from a Late Archaic smoking tube recovered from the Fint River site in Southeastern North America[J]. Journal of Archaeological Science: Reports, 2018, 21: 904-910
doi: 10.1016/j.jasrep.2018.05.013 URL |
[41] |
Echeverría J, Niemeyer HM. Nicotine in the hair of mummies from San Pedro De Atacama (Northern Chile)[J]. Journal of Archaeological Science, 2013, 40: 3561-3568
doi: 10.1016/j.jas.2013.04.030 URL |
[42] |
Bergström J. Tobacco smoking and subgingival dental calculus[J]. Journal of Clinical Periodontology, 2005, 32: 81-88
pmid: 15642063 |
[43] |
Eerkens JW, Tushingham S, Brownstein KJ, et al. Dental calculus as a source of ancient alkaloids: Detection of nicotine by LC-MS in calculus samples from the Americas[J]. Journal of Archaeological Science: Reports, 2018, 18: 509-515
doi: 10.1016/j.jasrep.2018.02.004 URL |
[44] |
Hardy K, Buckley S, Collins MJ, et al. Neanderthal medics? Evidence for food, cooking, and mdicinal plants entrapped in dental calculus[J]. Naturwissenschaften, 2012, 99: 617-626
doi: 10.1007/s00114-012-0942-0 URL |
[45] |
Fiorin E, Sáez L, Malgosa A. Ferns as healing plants in medieval Mallorca, Spain? Evidence from human dental calculus[J]. International Journal of Osteoarchaeology, 2019, 29: 82-90
doi: 10.1002/oa.v29.1 URL |
[46] |
Gismondi A, D’Agostino A, Canuti L, et al. Dental calculus reveals diet habits and medicinal plant use in the Early Medieval Italian population of Colonna[J]. Journal of Archaeological Science: Reports, 2018, 20: 556-564
doi: 10.1016/j.jasrep.2018.05.023 URL |
[47] |
D’Agostino A, Canini A, Di Marco G, et al. Investigating plant micro-remains embedded in dental calculus of the Phoenician inhabitants of Motya (Sicily, Italy)[J]. Plants, 2020, 9(10): 1395
doi: 10.3390/plants9101395 URL |
[48] | Fiorin E, Moore J, Montgomery J, et al. Combining dental calculus with isotope analysis in the Alps: New evidence from the Roman and medieval cemeteries of Lamon, Italy[J]. Quaternary International, 2023, 653-654: 89-102 |
[49] |
Blatt SH, Redmond BG, Cassman V, et al. Dirty teeth and ancient trade: Evidence of cotton fibres in human dental calculus from Late Woodland, Ohio[J]. International Journal of Osteoarchaeology, 2011, 21: 669-678
doi: 10.1002/oa.v21.6 URL |
[50] |
Sperduti A, Giuliani MR, Guida G, et al. Tooth grooves, occlusal striations, dental calculus, and evidence for fiber processing in an Italian eneolithic/bronze age cemetery[J]. American Journal of Physical Anthropology, 2018, 167: 234-243
doi: 10.1002/ajpa.23619 pmid: 30159883 |
[51] |
Chan AM, Brady JE, Scott Cummings L. Blue fibers found in dental calculus from Maya sacrificial victims[J]. International Journal of Osteoarchaeology, 2022, 32(6): 1310-1314
doi: 10.1002/oa.v32.6 URL |
[52] |
Scott GR, Poulson SR. Stable carbon and nitrogen isotopes of human dental calculus: a potentially new non-destructive proxy for paleodietary analysis[J]. Journal of Archaeological Science, 2012, 39: 1388-1393
doi: 10.1016/j.jas.2011.09.029 URL |
[53] |
Chidimuro B, Mundorff A, Speller C, et al. Isotope analysis of human dental calculus δ13CO32-: Investigating a potential new proxy for sugar consumption[J]. Rapid Communications in Mass Spectrometry, 2022, 36 (11): e9286
doi: 10.1002/rcm.9286 pmid: 35261104 |
[54] |
Weyrich LS, Dobney K, Cooper A. Ancient DNA analysis of dental calculus[J]. Journal of Human Evolution, 2015, 79: 119-124
doi: 10.1016/j.jhevol.2014.06.018 pmid: 25476244 |
[55] |
Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions[J]. Nature Genetics, 2013, 45(4): 450-455
doi: 10.1038/ng.2536 pmid: 23416520 |
[56] | Ottoni C, Borić D, Cheronet O, et al. Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus[J]. Proceedings of the National Academy of Sciences, 2021, 118 (32): e2102116118 |
[57] | 崔亚平. 牙结石分析与古代人类食谱研究[N]. 中国文物报,2008-8-15(007) |
[58] |
Yang JS, Zhang DJ, Yang XY, et al. Sustainable intensification of millet-pig agriculture in Neolithic North China[J]. Nature Sustainability, 2022, 5: 780-786
doi: 10.1038/s41893-022-00905-9 |
[59] | 赵春燕, 吕鹏, 吴卫红. 凌家滩与韦岗遗址出土猪牙结石的碳稳定同位素分析[J]. 南方文物, 2020, 117(3): 170-171 |
[60] |
Wu Y, Tao DW, Wu XJ, et al. Diet of the earliest modern humans in East Asia[J]. Frontiers in Plant Science, 2022, 13: 989308
doi: 10.3389/fpls.2022.989308 URL |
[61] | 陶大卫. 基于人牙结石的淀粉粒证据探讨裴李岗遗址先民植物性食物来源[J]. 文物保护与考古科学, 2018, 30(2): 1-9 |
[62] |
Tao DW, Zhang J, Zheng WQ, et al. Starch grain analysis of human dental calculus to investigate Neolithic consumption of plants in the middle Yellow River Valley, China: A case study on Gouwan site[J]. Journal of Archaeological Science: Reports, 2015, 2: 485-491
doi: 10.1016/j.jasrep.2015.05.003 URL |
[63] | 陶大卫, 陈朝云. 河南荥阳官庄遗址两周时期人牙结石的植物淀粉粒[J]. 人类学学报, 2018, 37(3): 467-477 |
[64] | 李明启, 杨晓燕, 王辉, 等. 甘肃临潭陈旗磨沟遗址人牙结石中淀粉粒反映的古人类植物性食物[J]. 中国科学:地球科学, 2010, 40(4): 486-492 |
[65] |
Li MQ. New evidence for the exploitation of the Triticeae tribe at approximately 4,000 cal. BP in the Gansu-Qinghai area of Northwest China[J]. Quaternary International, 2016, 426: 97-106
doi: 10.1016/j.quaint.2016.04.028 URL |
[66] |
Wang TT, Fuller BT, Wei D, et al. Investigating dietary patterns with stable isotope ratios of collagen and starch grain analysis of dental calculus at the Iron Age cemetery site of Heigouliang, Xinjiang, China[J]. International Journal of Osteoarchaeology, 2016, 26: 693-704
doi: 10.1002/oa.v26.4 URL |
[67] |
Tao DW, Zhang GW, Zhou YW, et al. Investigating wheat consumption based on multiple evidences: Stable isotope analysis on human bone and starch grain analysis on dental calculus of humans from the Laodaojing cemetery, Central Plains, China[J]. International Journal of Osteoarchaeology, 2020, 30: 594-606
doi: 10.1002/oa.v30.5 URL |
[68] | 陶大卫, 张国文, 周亚威, 等. 生物考古所见两周时期官庄聚落的人群与社会[J]. 人类学学报, 2021, 40(2): 320-327 |
[69] | 宋阿倩, 豆海锋. 陕西旬邑西头遗址商末周初殉人植物性食物组成分析:来自牙结石中的淀粉粒和植硅体证据[J]. 第四纪研究, 2023, 43(1): 1-15 |
[70] | 范林圆. 基于蛋白质组学技术对中国北方史前人类牙结石的研究[D]. 长春: 吉林大学, 2020 |
[71] | 丛德新, 赵春燕, 贾伟明. 新疆阿敦乔鲁遗址人类迁移行为与食物结构的初步研究[J]. 江汉考古, 2021, 6: 233-239 |
[72] |
Power RC, Wittig RM, Stone JR, et al. The representativeness of the dental calculus dietary record: Insights from Taï chimpanzee faecal phytoliths[J]. Archaeological and Anthropological Sciences, 2021, 13: 104
doi: 10.1007/s12520-021-01342-z |
[1] | ZHU Yutong, ZHANG Guowen, ZHENG Wanquan, ZHANG Yan. Stable isotope of the human bones from the Zhongjialiangzi site in Ningnan, Sichuan [J]. Acta Anthropologica Sinica, 2024, 43(05): 767-779. |
[2] | YANG Shiyu, ZHANG Qun, WANG Long, ZHANG Quanchao. Dental microwear analysis of human teeth in Shengjindian cemetery, Turpan, Xinjiang [J]. Acta Anthropologica Sinica, 2022, 41(02): 218-225. |
[3] | YUAN Haibing, GU Wanfa, WEI Qingli, WU Qian, DING Lanpo, CAO Doudou. Analysis of dental caries in the Yangshao population at the Qingtai site, Zhengzhou city [J]. Acta Anthropologica Sinica, 2022, 41(02): 226-237. |
[4] | ZHANG Quanchao, SUN Yuze, HOU Liangliang, JI Ping, ZHU Yonggang. Carbon and nitrogen stable isotope analysis of the human and animal bones from the Haminmangha site [J]. Acta Anthropologica Sinica, 2022, 41(02): 261-273. |
[5] | ZHAO Dongyue, LÜ Zheng, ZHANG Zetao, LIU Bo, LING Xue, WAN Yang, YANG Fan. Analysis on the economic mode of the ancestors of Dayindong cave site in Yunnan province by stable isotope [J]. Acta Anthropologica Sinica, 2022, 41(02): 295-307. |
[6] | SHI Chongyang, GUO Yi. Discussion on the utilization of fishery resources by the ancestors of Tianluoshan and liangwangcheng sites based on the diet analysis [J]. Acta Anthropologica Sinica, 2022, 41(02): 308-318. |
[7] | SHEN Yafan, ZHAO Yongsheng, FANG Hui, CHEN Xuexiang. Dental diseases of the Shang dynasty people of Daxinzhuang site in Jinan [J]. Acta Anthropologica Sinica, 2021, 40(04): 628-643. |
[8] | YANG Yimin. The research progress and prospect of organic residue analysis in China [J]. Acta Anthropologica Sinica, 2021, 40(03): 535-545. |
[9] | HUA Licheng, Peter S UNGAR. Application of dental microwear in diets reconstruction [J]. Acta Anthropologica Sinica, 2021, 40(02): 292-306. |
[10] | ZHOU Ligang, HAN Zhaohui, SUN Lei, HU Guoqiang. Stable isotope analysis of human remains from the Songzhuang Eastern Zhou Cemetery in Qixian, Henan Province: An investigation on the diet of nobles and human sacrifices [J]. Acta Anthropologica Sinica, 2021, 40(01): 63-74. |
[11] | ZHAO Zhenzhen, WANG Fuqiang, CHEN Songtao, JIN Guiyun. Plant resources utilization at the Wutai site in Yantai county: Ancient starch residue evidence from human dental calculus [J]. Acta Anthropologica Sinica, 2020, 39(03): 473-482. |
[12] | HUANG Chao, ZHANG Shuangquan. Technological analysis of burned bones and its implications for Paleolithic archaeology [J]. Acta Anthropologica Sinica, 2020, 39(02): 249-260. |
[13] | ZHANG Yajun, TONG Tao, LI Linhui, Trinle Tsering. The relationship between tooth wear and diet of the Gurugyam people in Tibet [J]. Acta Anthropologica Sinica, 2019, 38(01): 107-118. |
[14] | GUAN Ying, ZHOU Zhenyu, FAN Xuechun, GAO Xing. Neolithic human diet revealed by the dental residues in West Fujian [J]. Acta Anthropologica Sinica, 2018, 37(04): 631-639. |
[15] | TAO Dawei, CHEN Zhaoyun. Starch grain analysis of human dental calculus from the Guanzhuang site, Henan Province [J]. Acta Anthropologica Sinica, 2018, 37(03): 467-477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||