Acta Anthropologica Sinica ›› 2024, Vol. 43 ›› Issue (06): 993-1005.doi: 10.16359/j.1000-3193/AAS.2024.0083
Previous Articles Next Articles
WEI Pianpian1,2,3(), ZHAO Yuhao4,5
Received:
2024-03-03
Revised:
2024-05-10
Online:
2024-12-15
Published:
2024-11-28
CLC Number:
WEI Pianpian, ZHAO Yuhao. Evolution of Pleistocene human femora in East Asia[J]. Acta Anthropologica Sinica, 2024, 43(06): 993-1005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2024.0083
Fig.1 Geographic locations of Pleistocene hominin fossil sites in East Asia The base map is from the Standard Map Service System of the Ministry of Natural Resources: http://211.159.153.75/index.html
标本Specimens | 出土地点 Location | 属种Species | 年代Dating(BP) | 体质量Body mass(kg) | 股骨最大长 Lmax(Femoral) | 参考文献 References |
---|---|---|---|---|---|---|
Kresna 11 | 印度尼西亚 | 直立人 | ~900 ka | 67.2 | 459 | Puymerail et al., 2012 [ |
La Chaise-BD 5 | 法国 | 尼安德特人 | 127-116 ka | 60.5 | 338 | Couchoud, 2016 [ |
CDV-Tour 1 | 法国 | 尼安德特人 | (OIS 3) | -- | 444 | Vieillevigne, et al., 2008 [ |
Chancelade 1 | 法国 | 晚更新世现代人 | 13 ka | 64.9 | 411 | Barshay-Szmidt, et al. 2016 [ |
柳江(PA91,PA92) | 中国广西 | 晚更新世现代人 | 晚更新世 | 50.9 | 413 | Wei et al., 2023 [ |
田园洞1号 (PA1301, PA1302) | 中国北京 | 晚更新世现代人 | 40 ka | 73.4 | 463 | Wei et al., 2017 [ Shang and Trinkaus., 2012[ |
猫猫洞GM 7506 | 中国贵州 | 晚更新世现代人 | ~14.5 ka | 63.6 | 381 | Wei et al., 2021 [ |
马鹿洞MLDG1678 | 中国云南 | 晚更新世现代人 | ~14.3 ka | 58.0 | 383.0 | Wei et al., 2022 [ |
Tab.1 Comparative Pleistocene specimens for analysis of cortical thickness and cross-sectional biomechanical properties over the entire femoral diaphysis
标本Specimens | 出土地点 Location | 属种Species | 年代Dating(BP) | 体质量Body mass(kg) | 股骨最大长 Lmax(Femoral) | 参考文献 References |
---|---|---|---|---|---|---|
Kresna 11 | 印度尼西亚 | 直立人 | ~900 ka | 67.2 | 459 | Puymerail et al., 2012 [ |
La Chaise-BD 5 | 法国 | 尼安德特人 | 127-116 ka | 60.5 | 338 | Couchoud, 2016 [ |
CDV-Tour 1 | 法国 | 尼安德特人 | (OIS 3) | -- | 444 | Vieillevigne, et al., 2008 [ |
Chancelade 1 | 法国 | 晚更新世现代人 | 13 ka | 64.9 | 411 | Barshay-Szmidt, et al. 2016 [ |
柳江(PA91,PA92) | 中国广西 | 晚更新世现代人 | 晚更新世 | 50.9 | 413 | Wei et al., 2023 [ |
田园洞1号 (PA1301, PA1302) | 中国北京 | 晚更新世现代人 | 40 ka | 73.4 | 463 | Wei et al., 2017 [ Shang and Trinkaus., 2012[ |
猫猫洞GM 7506 | 中国贵州 | 晚更新世现代人 | ~14.5 ka | 63.6 | 381 | Wei et al., 2021 [ |
马鹿洞MLDG1678 | 中国云南 | 晚更新世现代人 | ~14.3 ka | 58.0 | 383.0 | Wei et al., 2022 [ |
标本Specimen | 年代Age (ka) | 体质量Mass (kg) | 股骨长L(mm) | Ix/Iy | Sj | 参考文献 |
---|---|---|---|---|---|---|
周口店 Zhoukoudian I | 770 | 62.9 | 404 | 0.767 | 5.057332 | [ |
周口店Zhoukoudian II | 770 | 60.7 | 0.697 | [ | ||
周口店Zhoukoudian IV | 770 | 60.6 | 411 | 0.741 | 4.089035 | [ |
周口店Zhoukoudian V | 770 | 61.3 | 0.703 | [ | ||
周口店Zhoukoudian VI | 770 | 62.9 | 0.902 | [ | ||
华龙洞 Hualongdong HLD 11 | ~300 | 60.8 | 0.870 | [ | ||
柳江Liujiang PA91 | 139~67 | 50.9 | 413 | 1.304 | 3.254333 | [ |
田园洞1号PA1302 | 40 | 73.4 | 463 | 2.188 | 4.318599 | [ |
山顶洞 UC 67 | 38.3~33.5 | 67.5 | 1.919 | [ | ||
山顶洞 UC 68 | 38.3~33.5 | 60.0 | 1.849 | [ | ||
港川人 Minatogawa 1 | 19.9 | 60.0 | 398 | 1.035 | 4.058189 | [ |
港川人 Minatogawa 2 | 19.9 | 45.0 | 360 | 0.863 | 3.131001 | [ |
港川人 Minatogawa 3 | 19.9 | 48.4 | 382 | 0.989 | 3.508562 | [ |
港川人 Minatogawa 4 | 19.9 | 45.0 | 360 | 1.020 | 2.729767 | |
猫猫洞 GM7506 | 14.5 | 63.6 | 381 | 1.898 | 4.995176 | [ |
猫猫洞 GM7507 | 14.5 | 59.8 | 1.964 | [ | ||
猫猫洞 GM7508 | 14.5 | 59.8 | 1.235 | [ |
Tab.2 Femoral middle cross-sectional geometric properties of East Asian Pleistocene hominins
标本Specimen | 年代Age (ka) | 体质量Mass (kg) | 股骨长L(mm) | Ix/Iy | Sj | 参考文献 |
---|---|---|---|---|---|---|
周口店 Zhoukoudian I | 770 | 62.9 | 404 | 0.767 | 5.057332 | [ |
周口店Zhoukoudian II | 770 | 60.7 | 0.697 | [ | ||
周口店Zhoukoudian IV | 770 | 60.6 | 411 | 0.741 | 4.089035 | [ |
周口店Zhoukoudian V | 770 | 61.3 | 0.703 | [ | ||
周口店Zhoukoudian VI | 770 | 62.9 | 0.902 | [ | ||
华龙洞 Hualongdong HLD 11 | ~300 | 60.8 | 0.870 | [ | ||
柳江Liujiang PA91 | 139~67 | 50.9 | 413 | 1.304 | 3.254333 | [ |
田园洞1号PA1302 | 40 | 73.4 | 463 | 2.188 | 4.318599 | [ |
山顶洞 UC 67 | 38.3~33.5 | 67.5 | 1.919 | [ | ||
山顶洞 UC 68 | 38.3~33.5 | 60.0 | 1.849 | [ | ||
港川人 Minatogawa 1 | 19.9 | 60.0 | 398 | 1.035 | 4.058189 | [ |
港川人 Minatogawa 2 | 19.9 | 45.0 | 360 | 0.863 | 3.131001 | [ |
港川人 Minatogawa 3 | 19.9 | 48.4 | 382 | 0.989 | 3.508562 | [ |
港川人 Minatogawa 4 | 19.9 | 45.0 | 360 | 1.020 | 2.729767 | |
猫猫洞 GM7506 | 14.5 | 63.6 | 381 | 1.898 | 4.995176 | [ |
猫猫洞 GM7507 | 14.5 | 59.8 | 1.964 | [ | ||
猫猫洞 GM7508 | 14.5 | 59.8 | 1.235 | [ |
Fig.3 Hominin femoral midshaft (50% section) anteroposterior/mediolateral bending rigidity (Ix/Iy) and standardized polar moment of area (Sj, biomechanical robusticity)
[1] |
Brian GR, William LJ. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism[J]. Science, 2008, 319(5870): 1662-1665
doi: 10.1126/science.1154197 pmid: 18356526 |
[2] | Carlson KJ, Marchi D. Reconstructing Mobility: Enviromental, Behavioral, and Morphological Feterminants[M]. Brtlin: Springer, 2014 |
[3] | Ruff CB, Sylvester AD, Rahmawati NT, et al. Two Late Pleistocene human femora from Trinil, Indonesia: Implications for body size and behavior in Southeast Asia[J]. Journal of Human Evolution, 2022, 172: 103252 |
[4] |
Stock JT. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy[J]. American Journal of Physical Anthropology, 2006, 131(2): 194-204
doi: 10.1002/ajpa.20398 pmid: 16596600 |
[5] | Wei P, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quaternary International, 2017, 434: 48-56 |
[6] | 魏偏偏. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2020, 93(4): 616-631 |
[7] | Wei P, Weng Z, Carlson KJ, et al. Late Pleistocene partial femora from Maomaodong, southwestern China[J]. Journal of Human Evolution, 2021, 155: 102977 |
[8] | Xing S, Wu XJ, Liu W, et al. Middle Pleistocene human femoral diaphyses from Hualongdong, Anhui Province, China[J]. American Journal of Physical Anthropology, 2021, 174(2): 285-298 |
[9] | Wei P, Ma S, Carlson KJ, et al. A structural reassessment of the Late Pleistocene femur from Maludong, southwestern China[J]. American Journal of Biological Anthropology, 2022, 1-12 |
[10] | Wei P, Cazenave M, Zhao Y, et al. Structural properties of the Late Pleistocene Liujiang femoral diaphyses from southern China[J]. Journal of Human Evolution, 2023, 183, 103424 |
[11] |
Harmon EH. The shape of the early hominin proximal femur[J]. American Journal of Physical Anthropology, 2009, 139(2), 154-171
doi: 10.1002/ajpa.20966 pmid: 19012328 |
[12] | Trinkaus E, Ruff CB. Diaphyseal cross-sectional morphology and biomechanics of the Fond-de-Forêt 1 femur and the Spy 2 femur and tibia[J]. Bulletin de La Société Royale Belge d’Anthropologie et de Préhistoire, 1989, 100: 33-42 |
[13] | Trinkaus E, Ruff CB. Femoral and tibial diaphyseal cross-Sectional geometry in Pleistocene Homo[J]. PaleoAnthropology, 2012, 13-62 |
[14] | Puymerail L, Volpato V, Debénath A, et al. A Neanderthal partial femora diaphysis from the “Grotte de la Tour”, La Chaise-de-Vouthon (Charente, France): Outer morphology and endostructural organization[J]. Comptes Rendus Palevol, 2012, 11(8): 581-593 |
[15] |
Ruff CB. Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects[J]. American Journal of Physical Anthropology, 2002, 119(4): 305-342
doi: 10.1002/ajpa.10117 pmid: 12448016 |
[16] | McCown TD, Keith A. The Stone Age of Mount Carmel II: The Fossil Human Remains from the Levalloiso Mousterian[M]. Oxford: Clarendon Press, 1939 |
[17] | Trinkaus E. Early modern humans[J]. Annual Review of Anthropology, 2005, 34: 207-230 |
[18] |
Liu W, Martinón-Torres M, Kaifu Y, et al. A mandible from the Middle Pleistocene Hexian site and its significance in relation to the variability of Asian Homo erectus[J]. American Journal of Physical Anthropology, 2017, 162: 715-731
doi: 10.1002/ajpa.23162 pmid: 28109118 |
[19] | Wu X, Trinkaus E. The Xujiayao 14 mandibular ramus and Pleistocene Homo mandibular variation[J]. Comptes Rendus Palevol, 2014, 13(4): 333-341 |
[20] | Xing S, O’Hara M, Guatelli-Steinberg D, et al. Dental scratches and handedness in East Asian early Pleistocene Hominins[J]. International Journal of Osteoarchaeology, 2017, 27(6): 937-946 |
[21] | 刘武, 吴秀杰, 邢松, 等. 中国古人类化石(第一版)[M]. 北京: 科学出版社, 2014, 347-350 |
[22] |
Chevalier T, Özçelik K, De Lumley MA, et al. The endostructural pattern of a middle Pleistocene human femoral diaphysis from the Karain E site (Southern Anatolia, Turkey)[J]. American Journal of Physical Anthropology, 2015, 157(4): 648-658
doi: 10.1002/ajpa.22762 pmid: 26059778 |
[23] |
Puymerail L, Ruff CB, Bondioli L, et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java)[J]. Journal of Human Evolution, 2012, 63(5): 741-749
doi: 10.1016/j.jhevol.2012.08.003 pmid: 23036460 |
[24] | Barshay-Szmidt C, Costamagno S, Henry-Gambier D, et al. New extensive focused AMS 14C dating of the Middle and Upper Magdalenian of the western Aquitaine/Pyrenean region of France (ca. 19-14 ka cal BP): Proposing a new model for its chronological phases and for the timing of occupation[J]. Quaternary International, 2016, 414: 62-91 |
[25] | Couchoud I. Étude Pétrographique et Isotopique de Spéléothèmes du Sud-Ouest de la France Formés en Contexte Archéologique: Contribution à la Connaissance des Paléoclimats Régionaux du Stade Isotopique 5[D]. Ph.D. Dissertation, University of Bordeaux, 2006 |
[26] | Matsu’ura S, Kondo M, Danhara T, et al. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area[J]. Science, 367(6474), 2020: 210-214. |
[27] | Shang H, Trinkaus E. The Early Modern Human from Tianyuan Cave, China[M]. Texas A&M University Press, College Station, 2010 |
[28] | Vieillevigne E, Bourguignon L, Ortega I, et al. Analyse croisée des données chronologiques et des industries lithiques dans le grand sud-ouest de la France (OIS 10 à 3)[J]. PALEO, 2008, 20: 145-166 |
[29] |
Ruff CB, Hayes W. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation[J]. American Journal of Physical Anthropology, 1983, 60: 359-381
pmid: 6846510 |
[30] | Wei P, Lu H, Carlson KJ, et al. The upper limb skeleton and behavioral lateralization of modern humans from Zhaoguo Cave, southwestern China[J]. American Journal of Physical Anthropology, 2020, 173(4): 671-696. |
[31] | Slice DE. Geometric morphometrics[J]. Annual Review of Anthropology, 2007, 36: 261-281 |
[32] | 魏偏偏, 邢松. 云南丽江古人类股骨的形态结构[J]. 人类学学报, 2013, 32(3): 354-364 |
[33] | Morimoto N, Ponce de Leon MS, Zollikofer CP. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff’s law[J]. Anat Rec (Hoboken), 2011, 294(4), 589-609. |
[34] |
Bondioli L, Bayle P, Dean C, et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[J]. American Journal of Physical Anthropology, 2010, 142(2): 328-34
doi: 10.1002/ajpa.21271 pmid: 20229503 |
[35] | Trinkaus E. Modern human versus Neandertal evolutionary distinctiveness[J]. Current Anthropology, 2006, 47(4): 597-620 |
[36] |
Macintosh AA, Stock JT. Intensive terrestrial or marine locomotor strategies are associated with inter- and intra-limb bone functional adaptation in living female athletes[J]. American Journal of Physical Anthropology, 2019, 168(3): 566-581
doi: 10.1002/ajpa.23773 pmid: 30613942 |
[37] |
Shaw CN, Stock JT. Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes[J]. American Journal of Physical Anthropology, 2009, 140(1): 160-172
doi: 10.1002/ajpa.21063 pmid: 19358297 |
[38] |
Weatherholt AM, Warden SJ. Tibial bone strength is enhanced in the jump leg of collegiate-level jumping athletes: A within-subject controlled cross-sectional study[J]. Calcified Tissue International, 2016, 98(2): 129-139
doi: 10.1007/s00223-015-0078-2 pmid: 26543032 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||