Acta Anthropologica Sinica ›› 2021, Vol. 40 ›› Issue (01): 1-11.doi: 10.16359/j.cnki.cn11-1963/q.2020.0078
• Research Articles • Next Articles
DING Manyu1,2,3(), HE Wei4, WANG Tianyi1,2,5, Shargan Wangdue4, ZHANG Ming1,2,3, CAO Peng1,2, LIU Feng1,2, DAI Qingyan1,2, FU Qiaomei1,2,3()
Received:
2019-02-26
Revised:
2019-05-07
Online:
2021-02-15
Published:
2021-02-25
Contact:
FU Qiaomei
E-mail:dingmanyu@ivpp.ac.cn;fuqiaomei@ivpp.ac.cn
CLC Number:
DING Manyu, HE Wei, WANG Tianyi, Shargan Wangdue, ZHANG Ming, CAO Peng, LIU Feng, DAI Qingyan, FU Qiaomei. A study of the mitochondrial genome of ancient inhabitants from the Latuotanggu cemetery, Tibet, China[J]. Acta Anthropologica Sinica, 2021, 40(01): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.cnki.cn11-1963/q.2020.0078
建库号Library ID | 样本号 Sample ID | 墓号 Cemetery ID | 平均污染度 Average Contamination | 污染95%置信区间 95% CI of Contamination | 5’ C->T | 测年 14C Date(BP) | 覆盖度 Coverage | 单倍体型Haplotype |
---|---|---|---|---|---|---|---|---|
L7056 | C3425 | M4 | 0.04% | 0.01-0.13 | 2.2 % | 760~675 | 476.6 | M9a1a1c1b1a |
L7055 | C3427 | M6 | 0.76% | 0.55-1.05 | 9 % | NA | 372.0 | M9a1a1c1b1a |
L7054 | C3428 | M5② | 0.69% | 0.48-0.99 | 3.9 % | NA | 396.1 | A17 |
Tab.1 Information on the LTTG cemetery samples
建库号Library ID | 样本号 Sample ID | 墓号 Cemetery ID | 平均污染度 Average Contamination | 污染95%置信区间 95% CI of Contamination | 5’ C->T | 测年 14C Date(BP) | 覆盖度 Coverage | 单倍体型Haplotype |
---|---|---|---|---|---|---|---|---|
L7056 | C3425 | M4 | 0.04% | 0.01-0.13 | 2.2 % | 760~675 | 476.6 | M9a1a1c1b1a |
L7055 | C3427 | M6 | 0.76% | 0.55-1.05 | 9 % | NA | 372.0 | M9a1a1c1b1a |
L7054 | C3428 | M5② | 0.69% | 0.48-0.99 | 3.9 % | NA | 396.1 | A17 |
地区 Area | 人群 Population | M9a Frequency | 文献来源 Reference |
---|---|---|---|
中国西藏 | LTTG | 50% | 本研究 |
尼泊尔 | a.Nepal | 50% | [ |
中国西藏 | Nyingchi | 13% | [ |
中国西藏 | Lhasa | 25% | [ |
中国西藏 | Shigatse | 25% | [ |
中国西藏 | Chamdo | 13% | [ |
中国西藏 | Deng | 39.56% | [ |
中国西藏 | Monpa | 41.17% | [ |
中国西藏 | Lhoba | 15.38% | [ |
中国西藏 | Sherpa | 18.40% | [ |
中国西藏 | Ngari | 24% | [ |
中国北方 | Daur | 10% | [ |
中国北方 | Tu | 10% | [ |
中国南方 | Han | 2% | [ |
尼泊尔 | Nepal | 12% | [ |
印度北部 | NE.India | 9% | [ |
Tab.2 Haplogroup frequencies
地区 Area | 人群 Population | M9a Frequency | 文献来源 Reference |
---|---|---|---|
中国西藏 | LTTG | 50% | 本研究 |
尼泊尔 | a.Nepal | 50% | [ |
中国西藏 | Nyingchi | 13% | [ |
中国西藏 | Lhasa | 25% | [ |
中国西藏 | Shigatse | 25% | [ |
中国西藏 | Chamdo | 13% | [ |
中国西藏 | Deng | 39.56% | [ |
中国西藏 | Monpa | 41.17% | [ |
中国西藏 | Lhoba | 15.38% | [ |
中国西藏 | Sherpa | 18.40% | [ |
中国西藏 | Ngari | 24% | [ |
中国北方 | Daur | 10% | [ |
中国北方 | Tu | 10% | [ |
中国南方 | Han | 2% | [ |
尼泊尔 | Nepal | 12% | [ |
印度北部 | NE.India | 9% | [ |
[1] |
Zhang XL, Ha BB, Wang SJ, et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago[J]. Science, 2018, 362(6418): 1049-1051
doi: 10.1126/science.aat8824 URL pmid: 30498126 |
[2] |
Lu D, Lou H, Kai Y, et al. Ancestral origins and genetic history of Tibetan highlanders[J]. American Journal of Human Genetics, 2016, 99(3): 580-594
doi: 10.1016/j.ajhg.2016.07.002 URL pmid: 27569548 |
[3] |
Li J, Zeng W, Zhang Y, et al. Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese[J]. BMC Evolutionary Biology, 2017, 17(1): 239
doi: 10.1186/s12862-017-1082-0 URL pmid: 29202706 |
[4] |
Yong-Bin Z, Hong-Jie L, Sheng-Nan L, et al. Ancient DNA evidence supports the contribution of Di-Qiang people to the Han Chinese gene pool[J]. American Journal of Physical Anthropology, 2011, 144(2): 258-268
doi: 10.1002/ajpa.21399 URL pmid: 20872743 |
[5] |
Handt O, Krings M, Ward RH, et al. The retrieval of ancient human DNA sequences[J]. American Journal of Human Genetics, 1996, 59(2): 368-76
URL pmid: 8755923 |
[6] |
Jeong C, Ozga AT, Witonsky DB, et al. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7485
doi: 10.1073/pnas.1520844113 URL |
[7] |
Duong NT, Macholdt E, Ton ND, et al. Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia[J]. Scientific Reports, 2018, 8(1): 11651.
doi: 10.1038/s41598-018-29989-0 URL pmid: 30076323 |
[8] |
Lippold S, Xu H, Ko A, et al. Human paternal and maternal demographic histories: Insights from high-resolution Y chromosome and mtDNA sequences[J]. Investigative Genetics, 2014, 5(1): 13.
doi: 10.1186/2041-2223-5-13 URL |
[9] |
Zhendong Q, Yajun Y, Longli K, et al. A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the last glacial maximum[J]. American Journal of Physical Anthropology, 2010, 143(4): 555-569
doi: 10.1002/ajpa.21350 URL pmid: 20623602 |
[10] |
Mian Z, Qing-Peng K, Hua-Wei W, et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2009, 106(50): 21230-5
doi: 10.1073/pnas.0907844106 URL |
[11] |
Peng MS, Palanichamy MG, Yao YG, et al. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a’b[J]. BMC Biology, 2011, 9(1): 2.
doi: 10.1186/1741-7007-9-2 URL |
[12] |
Peng MS, Xu W, Song JJ, et al. Mitochondrial genomes uncover the maternal history of the Pamir populations[J]. European Journal of Human Genetics, 2017.
doi: 10.1038/s41431-020-00807-4 URL pmid: 33495594 |
[13] |
Kang L, Zheng HX, Zhang M, et al. MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders[J]. Scientific Reports, 2016, 6(1): 31083
doi: 10.1038/srep31083 URL |
[14] |
Li YC, Wang HW, Tian JY, et al. Ancient inland human dispersals from Myanmar into interior East Asia since the Late Pleistocene[J]. Scientific Reports, 2015, 5:9473
doi: 10.1038/srep09473 URL pmid: 25826227 |
[15] |
Adimoolam C, Satish K, Jwalapuram S, et al. Updating phylogeny of mitochondrial DNA macrohaplogroup m in India: Dispersal of modern human in South Asian corridor[J]. Plos One, 2009, 4(10): e7447
doi: 10.1371/journal.pone.0007447 URL pmid: 19823670 |
[16] |
Summerer M, Horst J, Erhart G, et al. Large-scale mitochondrial DNA analysis in southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar[J]. BMC Evolutionary Biology, 2014, 14(1): 17
doi: 10.1186/1471-2148-14-17 URL |
[17] |
Wang HW, Li YC, Sun F, et al. Revisiting the role of the Himalayas in peopling Nepal: Insights from mitochondrial genomes[J]. Journal of Human Genetics, 2012, 57(4): 228
doi: 10.1038/jhg.2012.8 URL |
[18] |
Bhandari S, Zhang X, Cui C, et al. Genetic evidence of a recent Tibetan ancestry to Sherpas in the Himalayan region[J]. Scientific Reports, 2015, 5:16249
doi: 10.1038/srep16249 URL pmid: 26538459 |
[19] |
Fornarino S, Pala M, Battaglia V, et al. Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): A reservoir of genetic variation[J]. BMC Evolutionary Biology, 2009, 9(1): 154
doi: 10.1186/1471-2148-9-154 URL |
[20] |
Derenko M, Malyarchuk B, Denisova G, et al. Western Eurasian ancestry in modern Siberians based on mitogenomic data[J]. BMC Evolutionary Biology, 2014, 14(1): 217
doi: 10.1186/s12862-014-0217-9 URL |
[21] |
Albert Min-Shan K, Chung-Yu C, Qiaomei F, et al. Early Austronesians: into and out of Taiwan[J]. American Journal of Human Genetics, 2014, 94(3): 426-36
doi: 10.1016/j.ajhg.2014.02.003 URL |
[22] |
Kutanan W, Kampuansai J, Srikummool M, et al. Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of TaifKadai languages[J]. Human Genetics, 2017, 136(1): 85-98
doi: 10.1007/s00439-016-1742-y URL pmid: 27837350 |
[23] |
Dabney J, Knapp M, Glocke I, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15758-63
doi: 10.1073/pnas.1314445110 URL |
[24] |
Rohland N, Harney E, Mallick S, et al. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA[J]. Philosophical Transactions of the Royal Society of London, 2015, 370(1660): 20130624
doi: 10.1098/rstb.2013.0624 URL pmid: 25487342 |
[25] |
Jesse D, Matthias M. Length and GC-biases during sequencing library amplification: A comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries[J]. Biotechniques, 2012, 52(2): 87-94
doi: 10.2144/000113809 URL |
[26] |
Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform[J]. Nucleic Acids Research, 2012, 40(1): e3
doi: 10.1093/nar/gkr771 URL pmid: 22021376 |
[27] |
Fu Q, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan Cave, China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2223
doi: 10.1073/pnas.1221359110 URL |
[28] |
Gabriel R, Udo S, Janet K. LeeHom: Adaptor trimming and merging for Illumina sequencing reads[J]. Nucleic Acids Research, 2014, 42(18): e141
doi: 10.1093/nar/gku699 URL pmid: 25100869 |
[29] |
Gabriel R, Udo S, Tomislav M, et al. DeML: Robust demultiplexing of Illumina sequences using a likelihood-based approach[J]. Bioinformatics, 2014, 31(5): 770-2
doi: 10.1093/bioinformatics/btu719 URL pmid: 25359895 |
[30] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-60
doi: 10.1093/bioinformatics/btp324 URL pmid: 19451168 |
[31] |
Anita KBT, Dominic P, Sebastian SN, et al. HaploGrep: A fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups[J]. Human Mutation, 2011, 32(1): 25-32
doi: 10.1002/humu.21382 URL |
[32] | Oven MV. PhyloTree Build 17: Growing the human mitochondrial DNA tree[J]. Forensic Science International, Genetics Supplement, 2015. |
[33] |
Kutanan W, et al. New insights from Thailand into the maternal genetic history of mainland southeast Asia. Eur J Hum Genet, 2018, 26(6): 898-911
doi: 10.1038/s41431-018-0113-7 URL pmid: 29483671 |
[34] | Edgar RC. Muscle: Multiple sequence alignment with improved accuracy and speed[A]// Proceedings of the Computational Systems Bioinformatics Conference[C], IEEE, 2004. |
[35] |
Edgar RC. Muscle: A multiple sequence alignment method with reduced time and space complexity[J]. BMC Bioinformatics, 2004, 5:113
doi: 10.1186/1471-2105-5-113 URL pmid: 15318951 |
[36] |
Bandelt HJ, Forster P. HLA. Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution, 1999, 16(1): 37-48
doi: 10.1093/oxfordjournals.molbev.a026036 URL pmid: 10331250 |
[37] |
Leigh JW, Bryant D, Nakagawa S. Popart: Full-feature software for haplotype network construction[J]. Methods in Ecology and Evolution, 2015, 6(9): 1110-1116
doi: 10.1111/mee3.2015.6.issue-9 URL |
[38] |
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10[J]. Virus Evolution, 2018, 4(1).
doi: 10.1093/ve/vex043 URL pmid: 29340211 |
[39] |
Excoffier L, Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567
doi: 10.1111/j.1755-0998.2010.02847.x URL pmid: 21565059 |
[40] |
Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing[J]. Nature Genetics, 2007, 39(12): 1522-1527
doi: 10.1038/ng.2007.42 URL pmid: 17982454 |
[41] |
Sawyer S, Renaud G, Viola B, et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15696
doi: 10.1073/pnas.1519905112 URL pmid: 26630009 |
[42] |
Patterson N, Moorjani P, Luo Y, et al. Ancient admixture in human history[J]. Genetics, 2012, 192(3): 1065
doi: 10.1534/genetics.112.145037 URL |
[43] |
David P. jModelTest: Phylogenetic model averaging[J]. Molecular Biology & Evolution, 2008, 25(7): 1253-1256
doi: 10.1093/molbev/msn083 URL pmid: 18397919 |
[44] |
Jose Manuel S, Diego D, Taboada GL, et al. jmodeltest.org: Selection of nucleotide substitution models on the cloud[J]. Bioinformatics, 2014, 30(9): 1310-1311
doi: 10.1093/bioinformatics/btu032 URL |
[45] |
Meyer MC, et al. Permanent human occupation of the central Tibetan Plateau in the early Holocene[J]. Science, 2017, 355(6320): 64-67
doi: 10.1126/science.aag0357 URL pmid: 28059763 |
[46] |
Brantingham PJ, Xing G, Madsen DB, et al. Late occupation of the high-elevation northern Tibetan plateau based on cosmogenic, luminescence, and radiocarbon ages[J]. Geoarchaeology, 2013, 28(5): 413-431
doi: 10.1002/gea.2013.28.issue-5 URL |
[47] |
Chen FH, et al. , Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P[J]. Science, 2015, 347(6219): 248-250
doi: 10.1126/science.1259172 URL pmid: 25593179 |
[48] |
Lu H. Colonization of the Tibetan plateau, permanent settlement, and the spread of agriculture: Reflection on current debates on the prehistoric archeology of the Tibetan plateau[J]. Archaeological Research in Asia, 2016, 5:12-15
doi: 10.1016/j.ara.2016.02.010 URL |
[49] |
Qi X, Cui C, Peng Y, et al. Genetic evidence of Paleolithic colonization and Neolithic expansion of modern humans on the Tibetan plateau[J]. Molecular Biology and Evolution, 2013, 30(8): 1761-78
doi: 10.1093/molbev/mst093 URL |
[1] | ZHANG Ming, PING Wanjing, YANG Melinda Anna, FU Qiaomei. Ancient genomes reveal the complex genetic history of Prehistoric Eurasian modern humans [J]. Acta Anthropologica Sinica, 2023, 42(03): 412-421. |
[2] | ZHANG Xinghua, ZHENG Lianbin, XU Fei, BAO Jinping, YU Keli. Overweight and obesity in Tibetan Burmese adults in China [J]. Acta Anthropologica Sinica, 2023, 42(02): 272-276. |
[3] | HE Jianing, LI Nan, ZHANG Chi. Bioarchaeology of Neolithic Yangshao human skeletal remains from Baligang, Dengzhou: A diachronic approach [J]. Acta Anthropologica Sinica, 2022, 41(04): 686-697. |
[4] | LI Yonglan, YU Keli, ZHANG Xinghua, BAO Jinping, LI Chong, ZHENG Lianbin. Physical types and ethnological characteristics of Tibetans [J]. Acta Anthropologica Sinica, 2022, 41(04): 698-711. |
[5] | LU Yongxiu, DONG Guanghui. Relationship between the human activity and environment changes during the Neolithic and Bronze Age in different precipitation areas of Northwestern China [J]. Acta Anthropologica Sinica, 2022, 41(04): 749-763. |
[6] | CHEN Zui, ZHU Yonggang. Observation and analysis on the abandonment context of the Haminmangha site in Inner Mongolia [J]. Acta Anthropologica Sinica, 2022, 41(02): 342-353. |
[7] | XU Ting, FANG Qi, , SHI Yuxin, YANG Guorong, YAN Jiahai. A preliminary report on the survery and trial excavation of Xinxing Locality 1 in Wangqing, Jilin Province [J]. Acta Anthropologica Sinica, 2021, 40(05): 904-916. |
[8] | LIANG Qiyao, ZHANG Wei, CHEN Quanjia, TIAN He. Bone artifacts of the Honghe site in Qiqihar, Heilongjiang [J]. Acta Anthropologica Sinica, 2021, 40(05): 751-763. |
[9] | BAO Jinping, YU Keli, LI Yonglan, LI Chong, ZHANG Xinghua, ZHENG Lianbin. A study of Weizang and Kham Tibetans’ somatotype by Heath-Carter method [J]. Acta Anthropologica Sinica, 2021, 40(05): 834-846. |
[10] | CHEN Youcheng, HOU Guangliang, GAO Jingyi, CHEN Xiaoliang. A new microblade assemblage from Dongjicuona Lakeside in the Qinghai-Tibet Plateau and its technological relationship with adjacent areas [J]. Acta Anthropologica Sinica, 2021, 40(01): 28-39. |
[11] | XIANG Xiaoxue, DU Huimin, YU Keli, ZHENG Lianbin. Characteristics and comparison of body composition of the Monba, Lhoba and Sherpa peoples [J]. Acta Anthropologica Sinica, 2021, 40(01): 109-117. |
[12] | WANG Tianyi, ZHAO Dongyue, ZHANG Ming, QIAO Shiyu, YANG Fan, WAN Yang, YANG Ruowei, CAO Peng, LIU Feng, FU Qiaomei. Ancient DNA capture techniques and genetic study progress of early southern China populations [J]. Acta Anthropologica Sinica, 2020, 39(04): 680-694. |
[13] | ZHAO Jing, WANG Chuanchao. Comparison and summary of ancient DNA extraction technology [J]. Acta Anthropologica Sinica, 2020, 39(04): 706-716. |
[14] | LI Chunxiang, ZHANG Fan, MA Pengcheng, WANG Lixin, CUI Yinqiu. Ancient mitogenomes reveals Holocene human population history in the Nenjiang River valley [J]. Acta Anthropologica Sinica, 2020, 39(04): 695-705. |
[15] | ZHANG Yajun, ZHANG Xu, ZHAO Xin, TONG Tao, LI Linhui. Craniometric evidence and ancient DNA analysis of the population origin of Ngari prefecture of Tibet Autonomous Region between 3rd and 4th century AD [J]. Acta Anthropologica Sinica, 2020, 39(03): 435-449. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||