Acta Anthropologica Sinica ›› 2020, Vol. 39 ›› Issue (04): 521-531.doi: 10.16359/j.cnki.cn11-1963/q.2020.0019
Previous Articles Next Articles
XING Song1,2(), ZHOU Mi3, PAN Lei1,2
Received:
2020-03-27
Revised:
2020-04-30
Online:
2020-11-15
Published:
2020-11-23
CLC Number:
XING Song, ZHOU Mi, PAN Lei. Enamel-dentine junction shape and enamel thickness distribution of East Asian Middle Pleistocene hominin lower second molars[J]. Acta Anthropologica Sinica, 2020, 39(04): 521-531.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.cnki.cn11-1963/q.2020.0019
分类 | 标本 | 磨耗级别 |
---|---|---|
东亚中更新世中期直立人(n=2) | 周口店PA70 | 2 |
淅川PA533 | 2 | |
东亚中更新世晚期古人类(n=1) | 华龙洞 HLD1 | 2 |
尼安德特人 (n=5) | Krapina D1, D6, D10, D86, D107 | 1-2 |
全新世现代人(湖北、河南)(n=16) | MTS101; PJL17; QJY23; WJP16, 47, 50; YQM22; YYM19, 27, 43, 50, 71, 102, 199, 206, 248 | 2 |
全新世现代人(法国、德国)(n=5) | EMBR628; SP2613, 3027,5678, 6046 | 1-2 |
Tab.1 The M2 of East Asian Middle Pleistocene hominins and comparative specimens
分类 | 标本 | 磨耗级别 |
---|---|---|
东亚中更新世中期直立人(n=2) | 周口店PA70 | 2 |
淅川PA533 | 2 | |
东亚中更新世晚期古人类(n=1) | 华龙洞 HLD1 | 2 |
尼安德特人 (n=5) | Krapina D1, D6, D10, D86, D107 | 1-2 |
全新世现代人(湖北、河南)(n=16) | MTS101; PJL17; QJY23; WJP16, 47, 50; YQM22; YYM19, 27, 43, 50, 71, 102, 199, 206, 248 | 2 |
全新世现代人(法国、德国)(n=5) | EMBR628; SP2613, 3027,5678, 6046 | 1-2 |
Fig.1 The principal component analysis (PCA) of M2 enamel-dentine junction (EDJ) shape variation based on Diffeomorphic Surface Matching (DSM) The figures at four sides of the graphic represent the EDJ shape (occlusal and distolingual view) at the positive and negative poles of PC1 and PC2. The color gradient from blueness to redness means that the deformation degree between shape at each extreme and mean shape is increasing (in micron)
Fig.2 The morphometric map of M2 lateral enamel thickness Each map was displayed with the occlusal side being at the top and cervical side at the bottom. From left to right on each map: distal section of the buccal side, distal, lingual, mesial, mesial section of the buccal side
[1] | Wu X, Poirier FE. Human evolution in China: a metric description of the fossils and a review of the sites[M]. Oxford University Press, USA, 1995 |
[2] | 刘武, 吴秀杰, 邢松, 等. 中国古人类化石[M]. 北京: 科学出版社, 2014 |
[3] | 刘武, 吴秀杰, 邢松. 更新世中期中国古人类演化区域连续性与多样性的化石证据[J]. 人类学学报, 2019,38:473-490 |
[4] |
Li ZY, Wu XJ, Zhou LP, et al. Late Pleistocene archaic human crania from Xuchang, China[J]. Science, 2017,355:969-972
doi: 10.1126/science.aal2482 URL pmid: 28254945 |
[5] |
Buck LT, Stringer CB. Homo heidelbergensis[J]. Current Biology, 2014,24:R214-R215
URL pmid: 24650901 |
[6] | Stringer CB, Barnes I. Deciphering the Denisovans[J]. Proceedings of the National Academy of Sciences, USA, 2015,112:15542-15543 |
[7] |
Wu XJ, Maddux SD, Pan LEI, et al. Nasal floor variation among eastern Eurasian Pleistocene Homo[J]. Anthropological Science, 2012,120:217-226
doi: 10.1537/ase.120709 URL |
[8] | Gokhman D, Mishol N, de Manuel M, et al. Reconstructing Denisovan anatomy using DNA methylation maps[J]. Cell, 2019, 179: 180-192.e110 |
[9] |
Liu W, Zhang Y, Wu X. Middle Pleistocene human cranium from Tangshan (Nanjing), Southeast China: A new reconstruction and comparisons with Homo erectus from Eurasia and Africa[J]. American Journal of Physical Anthropology, 2005,127:253-262
doi: 10.1002/ajpa.20066 URL pmid: 15584056 |
[10] |
Cui Y, Wu X. A geometric morphometric study of a Middle Pleistocene cranium from Hexian, China[J]. Journal of Human Evolution, 2015,88:54-69
URL pmid: 26553818 |
[11] |
Liu W, Martinón-Torres M, Kaifu Y, et al. A mandible from the Middle Pleistocene Hexian site and its significance in relation to the variability of Asian Homo erectus[J]. American Journal of Physical Anthropology, 2017,162:715-731
doi: 10.1002/ajpa.23162 URL pmid: 28109118 |
[12] |
Liu W, Schepartz LA, Xing S, et al. Late Middle Pleistocene hominin teeth from Panxian Dadong, South China[J]. Journal of Human Evolution, 2013,64:337-355
doi: 10.1016/j.jhevol.2012.10.012 URL pmid: 23465337 |
[13] |
Xing S, Martinón-Torres M, Bermúdez de Castro JM, et al. Hominin teeth from the early Late Pleistocene site of Xujiayao, Northern China[J]. American Journal of Physical Anthropology, 2015,156:224-240
URL pmid: 25329008 |
[14] |
Xing S, Martinón-Torres M, de Castro JMB, et al. Middle Pleistocene hominin teeth from Longtan Cave, Hexian, China[J]. PLOS ONE, 2014,9:e114265
doi: 10.1371/journal.pone.0114265 URL pmid: 25551383 |
[15] |
Xing S, Sun C, Martinón-Torres M, et al. Hominin teeth from the Middle Pleistocene site of Yiyuan, Eastern China[J]. Journal of Human Evolution, 2016,95:33-54
URL pmid: 27260173 |
[16] |
Xing S, Martinón-Torres M, Bermúdez de Castro JM. The fossil teeth of the Peking Man[J]. Scientific Reports, 2018,8:1-11
URL pmid: 29311619 |
[17] |
Xing S, Martinón-Torres M, Bermúdez de Castro JM. Late Middle Pleistocene hominin teeth from Tongzi, southern China[J]. Journal of Human Evolution, 2019,130:96-108
URL pmid: 31010547 |
[18] |
Xing S, Martinón-Torres M, Bermúdez de Castro JM. et al. Middle Pleistocene Hominin Teeth from Longtan Cave, Hexian, China[J]. PLOS ONE, 2015,9:e114265
URL pmid: 25551383 |
[19] | Butler P. The ontogeny of molar pattern[J]. Biological Reviews, 1956,31:30-69 |
[20] |
Skinner MM, Gunz P, Wood BA, et al. Enamel-dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus[J]. Journal of Human Evolution, 2008,55:979-988
doi: 10.1016/j.jhevol.2008.08.013 URL pmid: 18824253 |
[21] |
Skinner MM, Wood B, Hublin JJ. Protostylid expression at the enamel-dentine junction and enamel surface of mandibular molars of Paranthropus robustus and Australopithecus africanus[J]. Journal of Human Evolution, 2009,56:76-85
doi: 10.1016/j.jhevol.2008.08.021 URL |
[22] | 刘武, 周蜜, 邢松. 卡氏尖在中国古人类化石中出现及其演化意义[J]. 人类学学报, 2018,37:159-175 |
[23] |
Pan L, Dumoncel J, de Beer F, et al. Further morphological evidence on South African earliest Homo lower postcanine dentition: enamel thickness and enamel dentine junction[J]. Journal of Human Evolution, 2016,96:82-96
doi: 10.1016/j.jhevol.2016.05.003 URL pmid: 27343773 |
[24] |
Zanolli C, Kullmer O, Kelley J, et al. Evidence for increased hominid diversity in the Early-Middle Pleistocene of Java, Indonesia[J]. Nature Ecology & Evolution, 2019,3:755-764
doi: 10.1038/s41559-019-0860-z URL pmid: 30962558 |
[25] |
Zanolli C, Martinón-Torres M, Bernardini F, et al. The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment[J]. PLOS ONE, 2018,13:e0189773
doi: 10.1371/journal.pone.0189773 URL pmid: 30281595 |
[26] |
Olejniczak A, Smith TM, Skinner MM, et al. Three-dimensional molar enamel distribution and thickness in Australopithecus and Paranthropus[J]. Biology Letters, 2008,4:406-410
doi: 10.1098/rsbl.2008.0223 URL pmid: 18522924 |
[27] |
Smith TM, Olejniczak AJ, Zermeno JP, et al. Variation in enamel thickness within the genus Homo[J]. Journal of Human Evolution, 2012,62:395-411
URL pmid: 22361504 |
[28] |
Braga J, Zimmer V, Dumoncel J, et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars[J]. Journal of Human Evolution, 2019,130:21-35
doi: 10.1016/j.jhevol.2019.01.009 URL pmid: 31010541 |
[29] |
Durrleman S, Pennec X, Trouvé A, et al. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration[J]. Journal of Human Evolution, 2012,62:74-88
doi: 10.1016/j.jhevol.2011.10.004 URL pmid: 22137587 |
[30] |
Beaudet A, Dumoncel J, de Beer F, et al. Morphoarchitectural variation in South African fossil cercopithecoid endocasts[J]. Journal of Human Evolution, 2016,101:65-78
doi: 10.1016/j.jhevol.2016.09.003 URL pmid: 27886811 |
[31] |
Beaudet A, Dumoncel J, Thackeray F, et al. Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids[J]. Journal of Human Evolution, 2016,95:104-120
doi: 10.1016/j.jhevol.2016.04.004 URL pmid: 27260177 |
[32] |
Urciuoli A, Zanolli C, Beaudet A, et al. The evolution of the vestibular apparatus in apes and humans[J]. eLife, 2020,9:e51261
URL pmid: 32122463 |
[33] |
Zanolli C, Pan L, Dumoncel J, et al. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden[J]. Journal of Human Evolution, 2018,116:1-13
URL pmid: 29477178 |
[34] |
Morimoto N, De León MSP, Zollikofer CPE. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: A test of Wolff's law[J]. The Anatomical Record, 2011,294:589-609
URL pmid: 21328564 |
[35] |
Puymerail L, Ruff CB, Bondioli L, et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java)[J]. Journal of Human Evolution, 2012,63:741-749
doi: 10.1016/j.jhevol.2012.08.003 URL pmid: 23036460 |
[36] | Puymerail L, Volpato V, Debénath A, et al. A Neanderthal partial femoral diaphysis from the “grotte de la Tour”, La Chaise-de-Vouthon (Charente, France): Outer morphology and endostructural organization[J]. Comptes Rendus Palevol, 2012,11:581-593 |
[37] | Wei P, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quaternary International, 2017,434:48-56 |
[38] | Jashashvili T, Dowdeswell MR, Lebrun R, et al. Cortical structure of hallucal metatarsals and locomotor adaptations in hominoids[J]. PLOS ONE, 2015,10:e0117905 |
[39] |
Zanolli C, Bondioli L, Coppa A, et al. The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: macromorphology and microstructure[J]. Journal of Human Evolution, 2014,74:96-113
doi: 10.1016/j.jhevol.2014.04.005 URL pmid: 24852385 |
[40] |
Molnar S. Human tooth wear, tooth function and cultural variability[J]. American Journal of Physical Anthropology, 1971,34:175-189
doi: 10.1002/ajpa.1330340204 URL pmid: 5572602 |
[41] | NESPOS database. Neanderthal Studies Professional Online Service[DB/OL], 2019, https://www.nespos.org/display/openspace/Home |
[42] | Dumoncel J, Durrleman S, Braga J, et al. Landmark-free 3D method for comparison of fossil hominins and hominids based on endocranium and EDJ shapes[J]. American Journal of Physical Anthropology, 2014, 153: suppl.56, 110 |
[43] |
Durrleman S, Pennec X, Trouvé A, et al. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration[J]. Journal of Human Evolution, 2012,62:74-88
doi: 10.1016/j.jhevol.2011.10.004 URL pmid: 22137587 |
[44] |
Durrleman S, Prastawa M, Charon N, et al. Morphometry of anatomical shape complexes with dense deformations and sparse parameters[J]. NeuroImage, 2014,101:35-49
URL pmid: 24973601 |
[45] | Durrleman S, Prastawa M, Korenberg JR, et al. Topology preserving atlas construction from shape data without correspondence using sparse parameters[A]. In: Ayache, N, Delingette, H, Golland, P, Mori, K (Eds.), Proceedings of Medical image Computing and Computer Assisted Intervention[C]. Springer, Nice, France, 2012: 223-230 |
[46] |
Durrleman S, Prastawa M, Charon N, et al. Morphometry of anatomical shape complexes with dense deformations and sparse parameters[J]. NeuroImage, 2014,101:35-49
URL pmid: 24973601 |
[47] | Bône A, Louis M, Martin B, et al. Deformetrica 4: An open-source software for statistical shape analysiss[A]//International Workshop on Shape in Medical Imaging[C]. Springer, Cham, 2018: 3-13 |
[48] | R Development Core Team. R: A language and environment for statistical computing[EB/OL],. R Foundation for Statistical Computing, Vienna, 2012 |
[49] | Dray S, Dufour AB. The ade4 package: Implementing the duality diagram for ecologists[J]. Journal of statistical software, 2007,22:1-20 |
[50] |
Schlager S, Profico A, Di Vincenzo F, et al. Retrodeformation of fossil specimens based on 3D bilateral semi-landmarks: Implementation in the R package “Morpho”[J]. PLOS ONE, 2018,13:e0194073
doi: 10.1371/journal.pone.0194073 URL pmid: 29554122 |
[51] | Dumoncel J. add_colormap_shooting.py[CP/OL],, 2020, https://gitlab.com/jeandumoncel/tools-for-deformetrica/-/blob/master/src/postprocessing/add_colormap_shooting.py |
[52] |
Wu X-J, Pei S-W, Cai Y-J, et al. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation[J]. Proceedings of the National Academy of Sciences, USA, 2019,116:9820-9824
doi: 10.1073/pnas.1902396116 URL |
[53] |
Chen F, Welker F, Shen C-C, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019,569:409-412
doi: 10.1038/s41586-019-1139-x URL pmid: 31043746 |
[54] |
Pan L, Dumoncel J, Mazurier A, et al. Structural analysis of premolar roots in Middle Pleistocene hominins from China[J]. Journal of Human Evolution, 2019,136:102669
doi: 10.1016/j.jhevol.2019.102669 URL pmid: 31614276 |
[55] | Wu XJ, Trinkaus E. The Xujiayao 14 Mandibular Ramus and Pleistocene Homo Mandibular Variation[J]. Comptes Rendus Palevol, 2014,13:333-341 |
[56] | Wu XJ, Crevecoeur I, Liu W, et al. Temporal labyrinths of eastern Eurasian Pleistocene humans[J]. Proceedings of the National Academy of Sciences, USA, 2014,111:10509-10513 |
[1] | PAN Lei, LIAO Wei, WANG Wei, LIU Jianhui, JI Xueping, YANG Xiaomei, HAO Yixin. Geometric morphometry of the enamel-dentine junction interface of Lufengpithecus hudienensis lower fourth premolars [J]. Acta Anthropologica Sinica, 2020, 39(04): 555-563. |
[2] | ZHOU Mi, CUI Yaming, XING Song. Analyzing enamel-dentine junction(EDJ) shape in recent Chinese upper premolars using 3D geometric morphometrics [J]. Acta Anthropologica Sinica, 2016, 35(04): 585-597. |
[3] | WANG Cuibin, ZHAO Lingxia. Perikymata Counts and Crown Formation Time of Anterior Teeth of Lufengpithecus lufengensis [J]. Acta Anthropologica Sinica, 2016, 35(01): 101-108. |
[4] | LIU Wu; WU Xian-zhu; WU Xiu-jie. Late Pleistocene human teeth found in the Huanglong Cave, Yunxi of Hubei Province [J]. Acta Anthropologica Sinica, 2009, 28(02): 113-129. |
[5] | LI Yongsheng. Have“Tongzi”fossils symptom of dental fluorosis ? [J]. Acta Anthropologica Sinica, 2007, 26(02): 125-127. |
[6] | ZHAO Xiaojin, HU Chunhong, WANG Bin, LIU Xiaorui, QIN Yuanchun, ZHANG Lin. Preliminary study on sexual dimorphism of the cheek teeth size in Macaca mulatta [J]. Acta Anthropologica Sinica, 2005, 24(04): 334-340. |
[7] | ZHANG Xin-feng; JI Xue-ping; SHEN Guan-jun. U-series dating on fossil teeth from Xianren Cave in Xichou, Yunnan Province [J]. Acta Anthropologica Sinica, 2004, 23(01): 88-92. |
[8] | XU Mei-ru; HUO Yi-liang; L¨U Bing-feng. An analysis of congenitally anomaly of namber of permanent teeth in Beijing adolescents [J]. Acta Anthropologica Sinica, 2003, 22(02): 145-149. |
[9] | PAN Ya-juan ; SHEN Guan-jun ; FANG Ying-san. U-series dating of fossil teeth from Lianhua Cave in Zhenjiang, Jiangsu Province [J]. Acta Anthropologica Sinica, 2002, 21(02): 155-157. |
[10] | He Jianing. Preliminary study on the teeth of Jinniushan archaichomo sapiens [J]. Acta Anthropologica Sinica, 2000, 19(03): 216-256. |
[11] | Lu Qingwu, Zhao Lingxia. A study of the eruption sequence in the mandibular teeth of Lufengpithecus [J]. Acta Anthropologica Sinica, 2000, 19(01): 11-85. |
[12] | Liu Wu, Wang Shancai. The characteristics of deciduous teeth of bronze age human found in Changyang, Hubei province [J]. Acta Anthropologica Sinica, 1998, 17(03): 177-190. |
[13] | Dong Xingren, Fan Xuechun. Note on fossil human teeth from Fox Cave at Qingliu [J]. Acta Anthropologica Sinica, 1996, 15(04): 315-319. |
[14] | Liu Wu. A review on Advances in Dental Anthropology [J]. Acta Anthropologica Sinica, 1996, 15(01): 91-. |
[15] | Liu Wu. The dental morphology of the Neolithic humans in North China and its relationship with modern Chinese origin [J]. Acta Anthropologica Sinica, 1995, 14(04): 360-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||