Acta Anthropologica Sinica ›› 2020, Vol. 39 ›› Issue (04): 632-647.doi: 10.16359/j.cnki.cn11-1963/q.2020.0021
Previous Articles Next Articles
ΖΗΑΟ Yuhao1,2,3(), ΖHOU Mi4, WEI Pianpian5, XING Song1,2,*()
Received:
2020-02-25
Revised:
2020-04-09
Online:
2020-11-15
Published:
2020-11-23
Contact:
XING Song
E-mail:zhaoyuhao18@mails.ucas.ac.cn;xingsong@ivpp.ac.cn
CLC Number:
ΖΗΑΟ Yuhao, ΖHOU Mi, WEI Pianpian, XING Song. 2D visualization and quantitative analysis of the humeral diaphysis cortical thickness[J]. Acta Anthropologica Sinica, 2020, 39(04): 632-647.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.cnki.cn11-1963/q.2020.0021
地点 Site | 时代 Chronological age | 男Male | 女 Female |
---|---|---|---|
河南省淅川县马岭Maling, Xichuan, Henan | 后冈一期Hougang I | 4 | 2 |
湖北省江陵县高台Gaotai, Jiangling, Hubei | 汉代Han Dynasty | 5 | 3 |
湖北省武汉市新洲区邾城工业园Zhucheng industrial park, Wuhan, Hubei | 汉代Han Dynasty | 1 | 1 |
湖北省房县计家湾Jijiawan, Fang, Hubei | 秦代Qin Dynasty | 1 | 1 |
湖北省襄阳市吴家坡Wujiapo, Xiangyang, hubei | 唐代Tang Dynasty | 2 | 0 |
河南省新乡市君子村Junzicun, Xinxiang, Henan | 清代Qing Dynasty | 10 | 4 |
Tab.1 The basic information of humeri used in the present study*
地点 Site | 时代 Chronological age | 男Male | 女 Female |
---|---|---|---|
河南省淅川县马岭Maling, Xichuan, Henan | 后冈一期Hougang I | 4 | 2 |
湖北省江陵县高台Gaotai, Jiangling, Hubei | 汉代Han Dynasty | 5 | 3 |
湖北省武汉市新洲区邾城工业园Zhucheng industrial park, Wuhan, Hubei | 汉代Han Dynasty | 1 | 1 |
湖北省房县计家湾Jijiawan, Fang, Hubei | 秦代Qin Dynasty | 1 | 1 |
湖北省襄阳市吴家坡Wujiapo, Xiangyang, hubei | 唐代Tang Dynasty | 2 | 0 |
河南省新乡市君子村Junzicun, Xinxiang, Henan | 清代Qing Dynasty | 10 | 4 |
Fig.1 Schematic diagram of morphometric maps (MM) Y axis of MM (from top to bottom): proximal, mid-proximal, midshaft, mid-distal, distal; X axis of MM (from left to right): lateral, anterior, medial, posterior, lateral.
Fig.2 Mean morphometric maps of male and female A, B: Standardized by maximum thickness; C, D: Standardized by biomechanical length; A, C: males; B, D: females; The white arrows indicate the positions that reflect the difference in thickness distribution between male and female
Fig.3 Mean morphometric maps of different populations A: Standardized by maximum thickness; B: Standardized by biomechanical length; The white arrows indicate the positions that reflect the differences in thickness distribution between different populations. From left to right: Maling, Gaotai, Junzicun.
Fig.4 The results of PCA after standardized by maximum thickness A: The PCA results of all specimens for demonstrating gender differences primarily. B: The PCA results of all male specimens for demonstrating population differences
Fig.5 The changing pattern of morphometric maps corresponding to the PCA results after standardized by maximum thickness A: The changing pattern of morphometric maps corresponding to the PCA results of all specimens for demonstrating gender differences primarily; B: The changing pattern of morphometric maps corresponding to the PCA results of all male specimens for demonstrating population differences; →:the direction which the PC value changes from small to large in the PCA results. The white arrows indicate the positions that reflect the differences in thickness distribution between different genders or populations
Fig.6 The results of PCA after standardized by biomechanical length A: The PCA results of all specimens for demonstrating gender differences primarily. B: The PCA results of all male specimens for demonstrating population differences
Fig.7 The changing pattern of morphometric maps corresponding to the PCA results after standardized by biomechanical length A: The changing pattern of morphometric maps corresponding to the PCA results of all specimens for demonstrating gender differences primarily; B: The changing pattern of morphometric maps corresponding to the PCA results of all male specimens for demonstrating population differences; →:the direction which the PC value changes from small to large in the PCA results. The white arrows indicate the positions that reflect the differences in thickness distribution between different genders or populations
[1] |
Morimoto N, Zollikofer CPE, Ponce de León MS. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations[J]. PLOS ONE, 2012,7(7):e41980
URL pmid: 22848680 |
[2] | Carlson KJ, Marchi D. Reconstructing mobility[M]. New York: Springer, 2014 |
[3] |
Carlson KJ, Sumner DR, Morbeck ME, et al. Role of nonbehavioral factors in adjusting long bone diaphyseal structure in free-ranging Pan troglodytes[J]. Int J Primatol, 2008,29(6):1401-1420
doi: 10.1007/s10764-008-9297-y URL pmid: 19816545 |
[4] | 吴汝康, 贾兰坡. 周口店新发现的中国猿人化石[J]. 古生物学报, 1954, 2(3): 267-288+348-354 |
[5] | 张旭, 李婧, 朱泓. 内蒙古和林格尔县大堡山墓地古代居民的肢骨研究[J]. 人类学学报, 2015,34(2):216-224 |
[6] | 陈德珍, 吴新智. 河南长葛石固早期新石器时代人骨的研究(续)[J]. 人类学学报, 1985,4(4):314-323 |
[7] | Trinkaus E, Ruff CB. Femoral and tibial diaphyseal cross-sectional geometry in Pleistocene Homo[J]. PaleoAnthropology, 2012: 13-62 |
[8] |
Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation[J]. Am J Phys Anthropol, 1983,60(3):359-381
doi: 10.1002/ajpa.1330600308 URL pmid: 6846510 |
[9] |
Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: II. Sex, age, and side differences[J]. Am J Phys Anthropol, 1983,60(3):383-400
URL pmid: 6846511 |
[10] |
Sparacello VS, Villotte S, Shackelford LL, et al. Patterns of humeral asymmetry among Late Pleistocene humans[J]. C R Palevol, 2017,16(5):680-689
doi: 10.1016/j.crpv.2016.09.001 URL |
[11] | Ruff CB. Biomechanical analyses of archaeological human skeletons[M]. Katzenberg M A, Grauer A L. Biological anthropology of the human skeleton. Hoboken: John Wiley & Sons, Inc, 2019, 189-224 |
[12] |
Amtmann E, Schmitt HP. Über die Verteilung der Corticalisdichte im menschlichen Femurschaft und ihre Bedeutung für die Bestimmung der Knochenfestigkeit[J]. Zeitschrift für Anatomie und Entwicklungsgeschichte, 1968,127(1):25-41
doi: 10.1007/BF00523600 URL |
[13] | Amtmann E. Mechanical stress, functional adaptation and the variation structure of the human femur diaphysis[M]. Berlin: Springer-Verlag, 1971 |
[14] | Zollikofer CPE, Ponce de León MS. Computer-assisted morphometry of hominoid fossils: the role of morphometric maps[M]. Phylogeny of the Neogene hominoid primates of Eurasia. Cambridge: Cambridge University Press, 2001, 50-59 |
[15] |
Bondioli L, Bayle P, Dean C, et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[J]. Am J Phys Anthropol, 2010,142(2):328-334
doi: 10.1002/ajpa.21271 URL pmid: 20229503 |
[16] |
Puymerail L, Ruff CB, Bondioli L, et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java)[J]. J Hum Evol, 2012,63(5):741-749
doi: 10.1016/j.jhevol.2012.08.003 URL |
[17] | Puymerail L, Volpato V, Debénath A, et al. A Neanderthal partial femoral diaphysis from the “grotte de la Tour”, La Chaise-de-Vouthon (Charente, France): Outer morphology and endostructural organization[J]. C R Palevol, 2012,11(8):581-593 |
[18] |
Zanolli C, Bondioli L, Coppa A, et al. The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: Macromorphology and microstructure[J]. J Hum Evol, 2014,74:96-113
doi: 10.1016/j.jhevol.2014.04.005 URL pmid: 24852385 |
[19] |
Jashashvili T, Dowdeswell MR, Lebrun R, et al. Cortical Structure of Hallucal Metatarsals and Locomotor Adaptations in Hominoids[J]. PLOS ONE, 2015,10(1):e0117905
doi: 10.1371/journal.pone.0117905 URL |
[20] |
Morimoto N, Ponce de León MS, Zollikofer CPE. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff’s law[J]. The Anatomical Record, 2011,294(4):589-609
doi: 10.1002/ar.21346 URL pmid: 21328564 |
[21] | Puymerail L. The functionally-related signatures characterizing the endostructural organisation of the femoral shaft in modern humans and chimpanzee[J]. C R Palevol, 2013,12(4):223-231 |
[22] | Wei PP, Wallace IJ, Jashashvili T, et al. Structural analysis of the femoral diaphyses of an early modern human from Tianyuan Cave, China[J]. Quat Int, 2017,434:48-56 |
[23] |
Ruff C. Growth tracking of femoral and humeral strength from infancy through late adolescence[J]. Acta Paediatr, 2005,94(8):1030-1037
doi: 10.1111/j.1651-2227.2005.tb02041.x URL pmid: 16188845 |
[24] |
Sumner DR, Andriacchi TP. Adaptation to differential loading: Comparison of growth-related changes in cross-sectional properties of the human femur and humerus[J]. Bone, 1996,19(2):121-126
URL pmid: 8853855 |
[25] |
Morimoto N, Nakatsukasa M, Ponce de León MS, et al. Femoral ontogeny in humans and great apes and its implications for their last common ancestor[J]. Sci Rep, 2018,8(1):1930
doi: 10.1038/s41598-018-20410-4 URL pmid: 29386644 |
[26] |
Dupej J, Lacoste Jeanson A, Pelikán J, et al. Semiautomatic extraction of cortical thickness and diaphyseal curvature from CT scans[J]. Am J Phys Anthropol, 2017,164(4):868-876
doi: 10.1002/ajpa.23315 URL pmid: 28913906 |
[27] | 邵象清. 人体测量手册[M]. 上海: 上海辞书出版社, 1985 |
[28] | 吴汝康, 吴新智, 张振标. 人体测量方法[M]. 北京: 科学出版社, 1984 |
[29] |
Ruff CB. Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects[J]. Am J Phys Anthropol, 2002,119(4):305-342
doi: 10.1002/ajpa.10117 URL pmid: 12448016 |
[30] | R Development Core Team. R: A language and environment for statistical computing[M]. R Foundation for Statistical Computing. Vienna, Austria. 2019 |
[31] | Bishop CM. Pattern recognition and machine learning[M]. New York: Springer-Verlag, 2006 |
[32] | 何晓群. 多元统计分析[M]. 北京: 中国人民大学出版社, 2019 |
[33] | 费宇, 郭民之, 陈贻娟. 多元统计分析——基于R[M]. 北京: 中国人民大学出版社, 2014 |
[34] | Klovan JE. R-and Q-Mode Factor Analysis[M]. McCammon R B. Concepts in Geostatistics. Berlin: Springer Berlin, 1975, 21-69 |
[35] |
Março PH, Scarminio IS. Q-mode curve resolution of UV-vis spectra for structural transformation studies of anthocyanins in acidic solutions[J]. Anal Chim Acta, 2007,583(1):138-146
doi: 10.1016/j.aca.2006.09.057 URL pmid: 17386538 |
[36] | Paatero P, Tapper U. Analysis of different modes of factor analysis as least squares fit problems[J]. Chemometrics Intell Lab Syst, 1993,18(2):183-194 |
[37] | Steyn M, İşcan MY. Osteometric variation in the humerus: sexual dimorphism in South Africans[J]. Forensic SciInt, 1999,106(2):77-85 |
[38] |
Sládek V, Ruff CB, Berner M, et al. The impact of subsistence changes on humeral bilateral asymmetry in Terminal Pleistocene and Holocene Europe[J]. J Hum Evol, 2016,92:37-49
URL pmid: 26989015 |
[39] | Lovejoy CO, McCollum MA, Reno PL, et al. Developmental biology and human evolution[J]. Annu Rev Anthropol, 2003,32(1):85-109 |
[40] | Chiu CH, Hamrick MW. Evolution and development of the primate limb skeleton[J]. Evol Anthropol, 2002,11(3):94-107 |
[41] | Pearson OM, Lieberman DE. The aging of Wolff’s “law”: Ontogeny and responses to mechanical loading in cortical bone[J]. Am J Phys Anthropol, 2004,125(S39):63-99 |
[42] |
Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad wolff? “Wolff is law” and bone functional adaptation[J]. Am J Phys Anthropol, 2006,129(4):484-498
doi: 10.1002/ajpa.20371 URL pmid: 16425178 |
[43] | Hsieh YF, Robling AG, Ambrosius WT, et al. Mechanical Loading of Diaphyseal Bone In Vivo: The Strain Threshold for an Osteogenic Response Varies with Location[J]. J Bone Miner Res, 2001,16(12):2291-2297 |
[44] |
Burr DB, Robling AG, Turner C H. Effects of biomechanical stress on bones in animals[J]. Bone, 2002,30(5):781-786
URL pmid: 11996920 |
[45] |
Niinimäki S, Söderling S, Junno JA, et al. Cortical bone thickness can adapt locally to muscular loading while changing with age[J]. Homo, 2013,64(6):474-490
doi: 10.1016/j.jchb.2013.07.004 URL pmid: 24028817 |
[1] | LIU Sitong, GU Wanfa, WU Qian, ZHOU Yawei. Deformation of the starting and ending points of the humeral tendon in the population from the Shuanghuaishu site in Henan Province [J]. Acta Anthropologica Sinica, 2024, 43(05): 757-766. |
[2] | DU Baopu, YIN Yuzhe, TAN Yi, ZHANG Yuge, FAN Bo, YAO Zhizheng, GUO Hang. Distribution of sexual stature dimorphism in modern Chinese populations and its influencing factors [J]. Acta Anthropologica Sinica, 2023, 42(02): 191-200. |
[3] | ZHOU Yawei, WANG Hui, DING Sicong, CHEN Bo. Pathological analysis of a case of human humeral asymmetry in Eastern Zhou Dynasty [J]. Acta Anthropologica Sinica, 2023, 42(01): 87-97. |
[4] | SUN Zeyang, ZHENG Lianbin, YU Keli, ZHANG Xinghua. A study of physical characteristics of the Mon-Khmer unidentified ethnic groups [J]. Acta Anthropologica Sinica, 2021, 40(05): 811-823. |
[5] | ZHANG Rufan, WU Chengfeng, CHEN Tao, ZHANG Jie, ZHANG Peng. Morphological Characteristics of Macaca Mulatta Brevicaudus [J]. Acta Anthropologica Sinica, 2021, 40(01): 97-108. |
[6] | WEI Pianpian. Structural properties of the femoral remains from Lijiang, Yunnan province [J]. Acta Anthropologica Sinica, 2020, 39(04): 616-631. |
[7] | ZHANG Xu, LI Jing, ZHU Hong. Research on the Limb Bones of Ancient Inhabitants from the Dabaoshan Cemetery in Inner Mongolia [J]. Acta Anthropologica Sinica, 2015, 34(02): 216-224. |
[8] | Zheng Lianbin, Lu Shunhua, Luo Dongmei, Xu Bosong. A study of the physical characteristics of the Nu nationality in Yunnan province [J]. Acta Anthropologica Sinica, 2008, 27(02): 156-164. |
[9] | ZHENG Lianbin, LU Shunhua, YU Huixin, LIU Haiping. A study on the physical characteristics of Wa nationality [J]. Acta Anthropologica Sinica, 2007, 26(03): 249-258. |
[10] | ZHAO Xiaojin, HU Chunhong, WANG Bin, LIU Xiaorui, QIN Yuanchun, ZHANG Lin. Preliminary study on sexual dimorphism of the cheek teeth size in Macaca mulatta [J]. Acta Anthropologica Sinica, 2005, 24(04): 334-340. |
[11] | ZHENG Lian-bin ; LU Shun-hua ; ZHENG Qi ; LI Shu-yuan. Principal component analysis on dermatoglyphics of populations in China [J]. Acta Anthropologica Sinica, 2002, 21(03): 231-238. |
[12] | Zheng Lianbin, Zheng Mingxia, Lu Shunhua, Li Shuyuan, Zheng qi, Li Yonglan. Comparative study on physical trait from 21 populations in Asia [J]. Acta Anthropologica Sinica, 2000, 19(01): 49-56. |
[13] | Zheng Lianbin, Lu Shunhua. Cluster analysis and principal component analysis on the physical characters of 23 populations in China [J]. Acta Anthropologica Sinica, 1997, 16(02): 151-158. |
[14] | Zheng Lianbin, Zhu Qin, Wang Qiaoling, Gao Qing, Li Chunshan, Li Wenhui, Chen Zilong, Yang Zhichun, Li Shoufen. The physical characters of Hui nationality in Ningxia [J]. Acta Anthropologica Sinica, 1997, 16(01): 11-21. |
[15] | Wa Rukang ( Woo Ju-kang), Wang Linghong. Single species and sexual dimorphism in Sinoadapis [J]. Acta Anthropologica Sinica, 1988, 7(01): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||