Acta Anthropologica Sinica ›› 2023, Vol. 42 ›› Issue (03): 359-372.doi: 10.16359/j.1000-3193/AAS.2023.0006
• Research Articles • Previous Articles Next Articles
DU Yuwei1,2,3(), ZHANG Yue1,2(), YE Zhi1,2,3, PEI Shuwen1,2
Received:
2022-07-04
Revised:
2022-10-10
Online:
2023-06-15
Published:
2023-06-13
CLC Number:
DU Yuwei, ZHANG Yue, YE Zhi, PEI Shuwen. A taphonomic analysis of faunal remains from the Jijiazhuang Paleolithic site in the Yuxian Basin[J]. Acta Anthropologica Sinica, 2023, 42(03): 359-372.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.anthropol.ac.cn/EN/10.16359/j.1000-3193/AAS.2023.0006
地点Sites→ 动物种属Animal species↓ | A地点 | B地点 | D地点 | E地点 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NISP | MNI | NISP | MNI | NISP | MNI | NISP | MNI | ||||
兔类Lagomorpha | 0 | 0 | 3 | 1 | 1 | 1 | 2 | 2 | |||
啮齿类Rodentia | 0 | 0 | 8 | 2 | 2 | 1 | 8 | 2 | |||
狐Vulpes sp. | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
小型食肉类Small carnivores | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |||
马Equus sp. | 16 | 1 | 46 | 4 | 1 | 1 | 37 | 2 | |||
犀科Rhinocerotidae | 6 | 1 | 16 | 1 | 3 | 1 | 15 | 1 | |||
鹿Cervus sp. | 2 | 1 | 25 | 3 | 0 | 0 | 11 | 1 | |||
瞪羚Gazella sp. | 0 | 0 | 7 | 3 | 0 | 0 | 3 | 1 | |||
牛科Bovidae | 0 | 0 | 11 | 1 | 3 | 1 | 7 | 1 | |||
大型食草类Large herbivores | 7 | 1 | 27 | 2 | 3 | 1 | 13 | 2 | |||
小计Sum | 32 | 5 | 143 | 17 | 13 | 6 | 97 | 13 | |||
其他Others * | 0 | 0 | 13 | 0 | 0 | 0 | 14 | 0 | |||
总计Total | 32 | 156 | 13 | 111 |
Tab.1 Counts of animal species from JJZ-A, B, D and E
地点Sites→ 动物种属Animal species↓ | A地点 | B地点 | D地点 | E地点 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NISP | MNI | NISP | MNI | NISP | MNI | NISP | MNI | ||||
兔类Lagomorpha | 0 | 0 | 3 | 1 | 1 | 1 | 2 | 2 | |||
啮齿类Rodentia | 0 | 0 | 8 | 2 | 2 | 1 | 8 | 2 | |||
狐Vulpes sp. | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||
小型食肉类Small carnivores | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | |||
马Equus sp. | 16 | 1 | 46 | 4 | 1 | 1 | 37 | 2 | |||
犀科Rhinocerotidae | 6 | 1 | 16 | 1 | 3 | 1 | 15 | 1 | |||
鹿Cervus sp. | 2 | 1 | 25 | 3 | 0 | 0 | 11 | 1 | |||
瞪羚Gazella sp. | 0 | 0 | 7 | 3 | 0 | 0 | 3 | 1 | |||
牛科Bovidae | 0 | 0 | 11 | 1 | 3 | 1 | 7 | 1 | |||
大型食草类Large herbivores | 7 | 1 | 27 | 2 | 3 | 1 | 13 | 2 | |||
小计Sum | 32 | 5 | 143 | 17 | 13 | 6 | 97 | 13 | |||
其他Others * | 0 | 0 | 13 | 0 | 0 | 0 | 14 | 0 | |||
总计Total | 32 | 156 | 13 | 111 |
种属Species→ 骨骼部位Bone element↓ | 马Equus sp. | 犀科Rhinocerotidae | 鹿Cervus sp. | 牛Bovidae | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | ||||
下颌骨Mandibles | 0 | 0 | 0 | 0 | 100.0% | 62.5% | 0 | 0 | |||
颈椎Cervical vertebrae | 28.6% | 0 | 0 | 14.3% | 0 | 0 | 0 | 0 | |||
胸椎Thoracic vertebrae | 15.1% | 1.7% | 9.4% | 16.3% | 19.2% | 0 | 0 | 15.4% | |||
腰椎Lumbar vertebrae | 9.6% | 8.3% | 0 | 0 | 0 | 37.5% | 0 | 0 | |||
肋骨Ribs | 4.0% | 0 | 5.2% | 0 | 0 | 0 | 11.6% | 0 | |||
髋骨Innominates | 21.4% | 100.0% | 50.0% | 0 | 25.0% | 50.0% | 0 | 20.0% | |||
肱骨Humerus | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
股骨Femurs | 28.6% | 5.0% | 30.0% | 0 | 83.3% | 50.0% | 40.0% | 0 | |||
髌骨Patellas | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
尺桡骨Radius-Ulna | 0 | 25.0% | 100.0% | 50.0% | 66.7% | 100.0% | 60.0% | 40.0% | |||
胫骨Tibia | 71.4% | 35.0% | 50.0% | 41.7% | 50.0% | 60.0% | 30.0% | ||||
腓骨Fibula | 0 | 0 | 50.0% | 100.0% | 0 | 0 | 0 | 0 | |||
腕骨Carpals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
其他跗骨Other tarsals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 100.0% | |||
跟骨Calcaneus | 0 | 5.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
距骨Astragalus | 71.4% | 50.0% | 0 | 0 | 75.0% | 0 | 100.0% | 0 | |||
掌骨Metacarpals | 71.4% | 50.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
跖骨Metatarsals | 100.0% | 50.0% | 0 | 0 | 0 | 0 | 100.0% | 0 | |||
第一趾节骨Phalange I | 25.0% | 0 | 0 | 5.8% | 0 | 0 | 0 | 0 | |||
第二趾节骨Phalange II | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 25.0% | |||
第三趾节骨Phalange III | 35.7% | 0 | 0 | 8.3% | 0 | 0 | 0 | 0 |
Tab.2 Bone element abundance (%MAU) of Equus sp., Rhinocerotidae, Cervus sp. and Bovidae from JJZ-B and JJZ-E
种属Species→ 骨骼部位Bone element↓ | 马Equus sp. | 犀科Rhinocerotidae | 鹿Cervus sp. | 牛Bovidae | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | B地点 | E地点 | ||||
下颌骨Mandibles | 0 | 0 | 0 | 0 | 100.0% | 62.5% | 0 | 0 | |||
颈椎Cervical vertebrae | 28.6% | 0 | 0 | 14.3% | 0 | 0 | 0 | 0 | |||
胸椎Thoracic vertebrae | 15.1% | 1.7% | 9.4% | 16.3% | 19.2% | 0 | 0 | 15.4% | |||
腰椎Lumbar vertebrae | 9.6% | 8.3% | 0 | 0 | 0 | 37.5% | 0 | 0 | |||
肋骨Ribs | 4.0% | 0 | 5.2% | 0 | 0 | 0 | 11.6% | 0 | |||
髋骨Innominates | 21.4% | 100.0% | 50.0% | 0 | 25.0% | 50.0% | 0 | 20.0% | |||
肱骨Humerus | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
股骨Femurs | 28.6% | 5.0% | 30.0% | 0 | 83.3% | 50.0% | 40.0% | 0 | |||
髌骨Patellas | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
尺桡骨Radius-Ulna | 0 | 25.0% | 100.0% | 50.0% | 66.7% | 100.0% | 60.0% | 40.0% | |||
胫骨Tibia | 71.4% | 35.0% | 50.0% | 41.7% | 50.0% | 60.0% | 30.0% | ||||
腓骨Fibula | 0 | 0 | 50.0% | 100.0% | 0 | 0 | 0 | 0 | |||
腕骨Carpals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
其他跗骨Other tarsals | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 100.0% | |||
跟骨Calcaneus | 0 | 5.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
距骨Astragalus | 71.4% | 50.0% | 0 | 0 | 75.0% | 0 | 100.0% | 0 | |||
掌骨Metacarpals | 71.4% | 50.0% | 0 | 0 | 0 | 0 | 0 | 0 | |||
跖骨Metatarsals | 100.0% | 50.0% | 0 | 0 | 0 | 0 | 100.0% | 0 | |||
第一趾节骨Phalange I | 25.0% | 0 | 0 | 5.8% | 0 | 0 | 0 | 0 | |||
第二趾节骨Phalange II | 71.4% | 0 | 0 | 0 | 0 | 0 | 0 | 25.0% | |||
第三趾节骨Phalange III | 35.7% | 0 | 0 | 8.3% | 0 | 0 | 0 | 0 |
种属Species→ 部位Element↓ | 鹿Cervus sp. | 马或牛Equus sp. or Bovidae | 犀Rhinocerotidae | 总计Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | ||||
颅骨Cranial bones | 0 | 0 | 14.3% | 0 | 0 | 12.5% | 14.3% | 12.5% | |||
下颌骨Mandibles | 33.3% | 0 | 0 | 0 | 0 | 33.3% | 16.7% | 16.7% | |||
颈椎Cervical vertebrae | 0 | 0 | 50% | 0 | 0 | 0 | 50% | 0 | |||
胸椎Thoracic vertebrae | 0 | 0 | 0 | 0 | 50% | 0 | 16.7% | 0 | |||
肋骨Ribs | 0 | 0 | 0 | 0 | 0 | 7.7% | 0 | 5.6% | |||
上部肢骨Upper limbs | 25% | 25% | 0 | 10% | 0 | 14.3% | 15.4% | 14.3% | |||
中部肢骨Middle limbs | 0 | 0 | 6.3% | 50% | 0 | 11.8% | 5.3% | 15.8% | |||
距骨Astragalus | 100% | 0 | 50% | 0 | 0 | 0 | 66.7% | 0 |
Tab.3 Frequency of carnivore gnaw marks and cut marks across bone elements from JJZ-B
种属Species→ 部位Element↓ | 鹿Cervus sp. | 马或牛Equus sp. or Bovidae | 犀Rhinocerotidae | 总计Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | Gnaw | Cut | ||||
颅骨Cranial bones | 0 | 0 | 14.3% | 0 | 0 | 12.5% | 14.3% | 12.5% | |||
下颌骨Mandibles | 33.3% | 0 | 0 | 0 | 0 | 33.3% | 16.7% | 16.7% | |||
颈椎Cervical vertebrae | 0 | 0 | 50% | 0 | 0 | 0 | 50% | 0 | |||
胸椎Thoracic vertebrae | 0 | 0 | 0 | 0 | 50% | 0 | 16.7% | 0 | |||
肋骨Ribs | 0 | 0 | 0 | 0 | 0 | 7.7% | 0 | 5.6% | |||
上部肢骨Upper limbs | 25% | 25% | 0 | 10% | 0 | 14.3% | 15.4% | 14.3% | |||
中部肢骨Middle limbs | 0 | 0 | 6.3% | 50% | 0 | 11.8% | 5.3% | 15.8% | |||
距骨Astragalus | 100% | 0 | 50% | 0 | 0 | 0 | 66.7% | 0 |
[1] | 卫奇. 泥河湾盆地考证[J]. 文物春秋, 2016, 2: 3-11 |
[2] | 裴树文, 马东东, 贾真秀, 等. 蔚县盆地吉家庄旧石器遗址发掘报告[J]. 人类学学报, 2018, 37(4): 510-528 |
[3] | 马东东, 牛东伟, 裴树文, 等. 蔚县盆地2017-2018年旧石器考古调查简报[J]. 人类学学报, 2021, 40(1): 128-136 |
[4] | 牛东伟, 闫晓蒙, 马东东, 等. 蔚县盆地2019-2020年旧石器考古调查[J]. 人类学学报, 2022, 41(5): 936-944 |
[5] | 裴树文. 泥河湾盆地南部(蔚县盆地)发现一处重要古人类活动遗址群[J]. 人类学学报, 2017, 36(1): 26 |
[6] |
叶芷, 杜雨薇, 裴树文, 等. 蔚县盆地吉家庄旧石器遗址的形成过程[J]. 人类学学报, 2022, 41(e), doi: 10.16359/j.1000-3193/AAS.2022.0052
doi: 10.16359/j.1000-3193/AAS.2022.0052 URL |
[7] | Lyman RL. Vertebrate taphonomy[M]. Cambridge University Press, 1994 |
[8] | 伊丽莎白·施密德. 动物骨骼图谱[M].译者:李天元. 北京: 中国地质大学出版社,1992 |
[9] | Binford LR. Faunal Remains from Klasies River Mouth[M]. Orlando, FL: Academic Press, 1984 |
[10] | 张乐, Norton CJ, 张双权, 等. 量化单元在马鞍山遗址动物骨骼研究中的运用[J]. 人类学学报, 2008, 27(1): 80-90 |
[11] |
Domínguez-Rodrigo M. Hunting and Scavenging by Early Humans: The State of the Debate[J]. Journal of World Prehistory, 2002, 16(1): 1-54
doi: 10.1023/A:1014507129795 URL |
[12] |
Domínguez-Rodrigo M. Meat-Eating by Early Hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge (Tanzania): an experimental approach using cut-mark data[J]. Journal of Human Evolution, 1997, 33: 669-690
pmid: 9467775 |
[13] | Fernandez-Jalvo Y, Andrews P. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification[M]. Dordrecht: Springer, 2016 |
[14] | Domínguez-Rodrigo M, Egeland CP, Barba R. Domínguez-Rodrigo M, Barba R, Egeland CP (The “physical attribute” taphonomic approach[A]. In: Eds.).Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites[C]. Dordrecht: Springer, 2007, 23-32 |
[15] |
Potts R, Shipman P. Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania[J]. Nature, 1981, 291: 577-580
doi: 10.1038/291577a0 |
[16] |
Bunn H. Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge[J]. Nature, 1981, 291: 574-577
doi: 10.1038/291574a0 |
[17] |
Behrensmeyer AK. Taphonomic and ecologic information from bone weathering[J]. Paleobiology, 1978, 4(2): 150-162
doi: 10.1017/S0094837300005820 URL |
[18] |
Fisher JW. Bone surface modifications in zooarchaeology[J]. Journal of Archaeological method and theory, 1995, 2(1): 7-68
doi: 10.1007/BF02228434 URL |
[19] |
Smith GM, Spasov R, Martisius NL, et al. Subsistence behavior during the initial Upper Paleolithic in Europe: site use, dietary practice, and carnivore exploitation at Bacho Kiro Cave (Bulgaria)[J]. Journal of Human Evolution, 2021, 161: 103074
doi: 10.1016/j.jhevol.2021.103074 URL |
[20] |
Domı́nguez-Rodrigo M, Piqueras A. The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours[J]. Journal of Archaeological Science. 2003, 30:1385-1391
doi: 10.1016/S0305-4403(03)00027-X URL |
[21] |
Blumenschine RJ, Marean CW, Capaldo SD. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces[J]. Journal of Archaeological Science, 1996, 23: 493-507
doi: 10.1006/jasc.1996.0047 URL |
[22] |
Vettese D, Blasco R, Cáceres I, et al. Towards an understanding of hominin marrow extraction strategies: a proposal for a percussion mark terminology[J]. Archaeological and Anthropological Sciences, 2020, 12: 48
doi: 10.1007/s12520-019-00972-8 |
[23] |
Capaldo SD, Blumenschine RJ. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones[J]. American Antiquity, 1994, 59(4): 724-748
doi: 10.2307/282345 URL |
[24] |
Johnson EV, Parmenter PCR, Outram AK. A new approach to profiling taphonomic history through bone fracture analysis, with an example application to the Linearbandkeramik site of Ludwinowo 7[J]. Journal of Archaeological Science: Reports, 2016, 9: 623-629
doi: 10.1016/j.jasrep.2016.08.047 URL |
[25] | Johnson E. Schiffer MB (Current developments in bone technology[A]. In: Eds.). Advances in Archaeological Method and Theory (Volume 8)[C]. Orlando: Academic Press, 1985, 157-235 |
[26] |
Outram AK. A new approach to identifying bone marrow and grease exploitation: why the “indeterminate” fragments should not be ignored[J]. Journal of Archaeological Science, 2001, 28: 401-410
doi: 10.1006/jasc.2000.0619 URL |
[27] | Binford LR. Nunamiut Ethnoarchaeology[M]. New York: Academic Press, 1978 |
[28] |
Villa P, Mahieu E. Breakage patterns of human long bones[J]. Journal of Human Evolution, 1991, 21: 27-48
doi: 10.1016/0047-2484(91)90034-S URL |
[29] |
Lam YM, Chen XB, Pearson OM. Intertaxonomic Variability in Patterns of Bone Density and the differential representation of Bovid, Cervid, and Equid elements in the archaeological record[J]. American Antiquity, 1999, 64(2): 343-362
doi: 10.2307/2694283 URL |
[30] |
Kreutzer LA. Bison and Deer Bone Mineral Densities: comparisons and implications for the interpretation of archaeological faunas[J]. Journal of Archaeological Science, 1992, 19: 271-294
doi: 10.1016/0305-4403(92)90017-W URL |
[31] |
Blumenschine RJ. An Experimental Model of the Timing of Hominid and Carnivore Influence on Archaeological Bone Assemblages[J]. Journal of Archaeological Science, 1988, 15: 483-502
doi: 10.1016/0305-4403(88)90078-7 URL |
[32] | 张双权. 河南许昌灵井动物群的埋藏学研究[D]. 北京: 中国科学院大学, 2009 |
[33] | Brain CK. The Hunters or the Hunted? An Introduction to African Cave Taphonomy[M]. Chicago: University of Chicago Press, 1981 |
[34] | Bunn HT, Kroll EM. Systematic Butchery by Plio/Pleistocene Hominids at Olduvai Gorge, Tanzania[J]. Current Anthropology, 1986, 627(5): 431-452 |
[35] | Fairnell E. 101 ways to skin a fur-bearing animal: the implications for zooarchaeological interpretation[A]. In: Cunningham P, Heeb J, Paardekooper R (Eds.). Experiencing archaeology by experiment [C]. Oxbow: Oxford, 2008, 47-60 |
[36] |
Selvaggio MM. Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications[J]. Journal of Human Evolution, 1994, 27: 215-228
doi: 10.1006/jhev.1994.1043 URL |
[37] |
Capaldo SD. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania[J]. Journal of Human Evolution, 1997, 33: 555-597
pmid: 9403079 |
[38] | Domínguez-Rodrigo M, Barba R. The behavioral meaning of cut marks at the FLK Zinj level: the carnivore-hominid-carnivore hypothesis falsified (II)[A]. In: Domínguez-Rodrigo M, Barba R, Egeland CP (Eds.). Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites[C]. Dordrecht: Springer, 2007, 75-100 |
[39] |
Lupo KD, O’Connell JF. Cut and tooth mark distributions on large animal bones: ethnoarchaeological data from the Hadza and their implications for current ideas about early human carnivory[J]. Journal of Archaeological Science, 2002, 29:85-109
doi: 10.1006/jasc.2001.0690 URL |
[40] |
Pickering TR, Domínguez-Rodrigo M, Heaton JL, et al. Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania[J]. Journal of Archaeological Science, 2013, 40: 1295-1309
doi: 10.1016/j.jas.2012.09.025 URL |
[41] |
Blumenschine RJ. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania[J]. Journal of Human Evolution, 1995, 29: 21-51
doi: 10.1006/jhev.1995.1046 URL |
[42] | 张双权, 彭菲, 张乐, 等. 宁夏鸽子山遗址第10地点出土动物骨骼的埋藏学初步观察[J]. 人类学学报, 2019, 38(2): 232-244 |
[43] |
Pickering TR, Egeland CP. Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans[J]. Journal of Archaeological Sciences, 2006, 33: 459-469
doi: 10.1016/j.jas.2005.09.001 URL |
[44] | Starkovich BM, Conard NJ. What were they up against? Lower Paleolithic hominin meat acquisition and competition with Plio-Pleistocene carnivores[A]. In: García-Moreno A, Hutson JM, Smith GM, et al (Eds.). Human behavioral adaptations to interglacial lakeshore environments[C]. Mainz and Heidelberg: RGZM-Tagungen, 2020, 105-130 |
[1] | FAN Wentian, YANG Xiaodong. A preliminary report on the excavation of Nanshangen Paleolithic Locality in the Nihewan Basin [J]. Acta Anthropologica Sinica, 2023, 42(02): 260-271. |
[2] | BIE Jingjing, XIA Nan, WANG Shejiang, YI Shuangwen, LU Huayu, XIA Wenting, ZHANG Gaike, LI Jiameng. Paleolithic artifacts excavated from the Lyudouliang site at Yangxian County, Shaanxi Province [J]. Acta Anthropologica Sinica, 2023, 42(01): 15-24. |
[3] | YE Zhi, DU Yuwei, PEI Shuwen, DING Xin, XU Zhe, MA Dongdong. A study of the formation process of Jijiazhuang Paleolithic site in Yuxian Basin [J]. Acta Anthropologica Sinica, 2023, 42(01): 46-60. |
[4] | ZHANG Yueshu, LI Feng, CHEN Fuyou, YI Mingjie, GAO Xing. Formation processes of Layer 6A2 of the Donggutuo site in the Nihewan Basin [J]. Acta Anthropologica Sinica, 2023, 42(01): 61-74. |
[5] | WANG Xiaomin, WANG Fagang, CHEN Fuyou, LI Feng, GAO Xing. Exploitation strategy of animal resources by ancient humans at the Late Pleistocene site of Banjingzi, Nihewan basin [J]. Acta Anthropologica Sinica, 2022, 41(06): 1005-1016. |
[6] | YI Mingjie, PEI Shuwen, NIU Dongwei, MA Ning. Stone artifacts from Wangzhuang, Wujiawai and Yuegou sites in the Danjiangkou Reservoir region [J]. Acta Anthropologica Sinica, 2022, 41(06): 959-966. |
[7] | ZHAN Shijia, DONG Zhe, YI Shuangwen, ZHANG Hongyan, LI Hao, PEI Shuwen. The stone artifacts discovered in the Paleolithic survey in the Chaohu Lake Region, Anhui Province in 2019 [J]. Acta Anthropologica Sinica, 2022, 41(05): 927-935. |
[8] | HOU Yanfeng, ZHANG Jian, CAO Yanpeng, JIN Songan. Faunal remains of the Yangshao period from the Gouwan site, Xichuan county, Henan province [J]. Acta Anthropologica Sinica, 2022, 41(05): 913-926. |
[9] | NIU Dongwei, YAN Xiaomeng, MA Dongdong, XU Zhe, PEI Shuwen. A report on the 2019-2020 paleolithic survey in Yuxian Basin [J]. Acta Anthropologica Sinica, 2022, 41(05): 936-944. |
[10] | LIU Wu, WU Xiujie. Morphological diversities and evolutionary implications of the late Middle Pleistocene hominins in China [J]. Acta Anthropologica Sinica, 2022, 41(04): 563-575. |
[11] | PEI Shuwen, CAI Yanjun, DONG Zhe, TONG Haowen, SHENG Jinchao, JIN Zetian, WU Xiujie, LIU Wu. Evolution of cave system at Hualongdong, Anhui and its relation to human occupation [J]. Acta Anthropologica Sinica, 2022, 41(04): 593-607. |
[12] | DU Yuwei, DING Xin, PEI Shuwen. A brief discussion on the approaches of taphonomic study of archaeofaunas from paleoanthropological sites [J]. Acta Anthropologica Sinica, 2022, 41(03): 523-534. |
[13] | DONG Zhe, ZHAN Shijia. A preliminary report on the survey and excavation at Anyouzhuang Paleolithic site in Ningguo city, Anhui province [J]. Acta Anthropologica Sinica, 2022, 41(02): 334-341. |
[14] | WU Xianzhu, CHEN Yuzhi, Drozdov NI. Mogera robusta fossils from the Listvenka site, Siberia [J]. Acta Anthropologica Sinica, 2021, 40(06): 1032-1040. |
[15] | REN Jincheng, WANG Fagang, LI Feng, YANG Qingjiang, CHEN Fuyou, GAO Xing. Formation processes of the Banjingzi Paleolithic site in the Nihewan Basin [J]. Acta Anthropologica Sinica, 2021, 40(03): 378-392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||