Three dimensional morphological variation of occiput in extant human populations
Received date: 2020-07-14
Revised date: 2020-08-30
Online published: 2020-11-06
Different from facial-, neuro- and basi- cranium, how occipital morphology reflects population relationship was still largely uninvestigated. Besides, due to the complexity of the occipital, it’s hard to use traditional morphometrics to capture its overall morphology. Here we present a study on occipital shape and allometric pattern variation among populations using three-dimensional geometric morphometrics and multivariate statistics. One hundred and three extant adult male skulls from Asia, Africa and Europe were applied for this study. Significant differences were observed among different populations on occipital size and occipital shape though efficient discriminations were unlikely to be made. On the contrary, great variations have been noticed among the pooled modern populations, mainly on the projection and superior-inferior position of the external occipital protuberance, proportion of nuchal and occipital plane, anterior-posterior position, medial-lateral and superior-inferior position of asterion, and inclination of clivus. Allometric patterns were different among populations. Nonetheless, similar allometric patterns have been observed within African and European. This study failed to find a strong relationship between occipital morphology and population relationships, and further suggests that the occipital morphology is largely influenced by function and environment..
Key words: Modern Human; Population; Occipital; Geometric morphology; Allometry
Yameng ZHANG . Three dimensional morphological variation of occiput in extant human populations[J]. Acta Anthropologica Sinica, 2020 , 39(04) : 648 -658 . DOI: 10.16359/j.cnki.cn11-1963/q.2020.0060
[1] | Von Cramon-Taubadel N. Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects[J]. Journal of Anthropological Sciences, 2014,92(4):43-77 |
[2] | Noback ML, Harvati K. Covariation in the human masticatory apparatus[J]. The Anatomical Record, 2015,298(1):64-84 |
[3] | Hubbe M, Hanihara T, Harvati K. Climate Signatures in the Morphological Differentiation of Worldwide Modern Human Populations[J]. The Anatomical Record, 2009,292(11):1720-1733 |
[4] | Ruff CB. Morphological adaptation to climate in modern and fossil hominids[J]. American Journal of Physical Anthropology, 1994,37(S19):65-107 |
[5] | Boas F. Changes in the bodily form of descendants of immigrants[J]. American Anthropologist, 1912,14(3):530-562 |
[6] | Relethford JH. Boas and beyond: Migration and craniometric variation[J]. American Journal of Human Biology, 2004,16(4):379-386 |
[7] | Sparks CS, Jantz RL. A reassessment of human cranial plasticity: Boas revisited[J]. Proceedings of the National Academy of Sciences, 2002,99(23):14636-14639 |
[8] | Gravlee CC, Bernard HR, Leonard WR. Heredity, environment, and cranial form: A reanalysis of Boas’s immigrant data[J]. American Anthropologist, 2003,105(1):125-138 |
[9] | Von Cramon-Taubadel N. Global human mandibular variation reflects differences in agricultural and hunter-gatherer subsistence strategies[J]. Proceedings of the National Academy of Sciences, 2011,108(49):19546-19551 |
[10] | Shea BT. Eskimo craniofacial morphology, cold stress and the maxillary sinus[J]. American Journal of Physical Anthropology, 1977,47(2):289-300 |
[11] | Carey JW, Steegmann Jr AT. Human nasal protrusion, latitude, and climate[J]. American Journal of Physical Anthropology, 1981,56(3):313-319 |
[12] | Lieberman DE, Krovitz GE, Yates FW, et al. Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face[J]. Journal of Human Evolution, 2004,46(6):655-677 |
[13] | Von Cramon‐Taubadel N. Congruence of individual cranial bone morphology and neutral molecular affinity patterns in modern humans[J]. American Journal of Physical Anthropology, 2009,140(2):205-215 |
[14] | Harvati K, Weaver TD. Human cranial anatomy and the differential preservation of population history and climate signatures[J]. The Anatomical Record, 2006,288(12):1225-1233 |
[15] | Smith HF. Which cranial regions reflect molecular distances reliably in humans? Evidence from three‐dimensional morphology[J]. American Journal of Human Biology, 2009,21(1):36-47 |
[16] | Smith HF, Ritzman T, Otárola-Castillo E, et al. A 3-D geometric morphometric study of intraspecific variation in the ontogeny of the temporal bone in modern Homo sapiens[J]. Journal of Human Evolution, 2013,65(5):479-489 |
[17] | Bowcock AM, Ruiz-Linares A, Tomfohrde J, et al. High resolution of human evolutionary trees with polymorphic microsatellites[J]. Nature, 1994,368(6470):455-457 |
[18] | Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping[J]. Annual Review of Genomics and Human Genetics, 2008,9:403-433 |
[19] | Stringer C, Andrews P. Genetic and fossil evidence for the origin of modern humans[J]. Science, 1988,239(4845):1263-1268 |
[20] | Sperber GH. Craniofacial Development[M]. Hamilton, Ontario, Canada: BC Decker, 2001 |
[21] | Scott JH. The cranial base[J]. American Journal of Physical Anthropology, 1958,16(3):319-348 |
[22] | Powell TV, Brodie AG. Closure of the spheno-occipital synchondrosis[J]. The Anatomical Record, 1963,147(1):15-23 |
[23] | Liu JX, Thornell LE, Pedrosa-Domell?f F. Muscle spindles in the deep muscles of the human neck: a morphological and immunocytochemical study[J]. Journal of Histochemistry and Cytochemistry, 2003,51(2):175-186 |
[24] | Kulkarni V, Chandy M, Babu K. Quantitative study of muscle spindles in suboccipital muscles of human foetuses[J]. Neurology India, 2001,49(4):355 |
[25] | Tobias PV. Studies on the occipital bone in Africa: V, the occipital curvature in fossil man and the light it throws on the morphogenesis of the Bushman[J]. 1959,17(1):1-11 |
[26] | Tobias PV. Studies on the occipital bone in Africa: III, sex differences and age changes in occipital curvature and their bearing on the morphogenesis of differences between bushmen and negroes[J]. South African Journal of Medical Science, 1959,23:135-146 |
[27] | Tobias PV. Studies on the occipital bone in Africa: I, pearson’s occipital index and the chord-arc index in modern african crania: means, minimum values, and variability[J]. The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 1959,89(2):233-252 |
[28] | Tobias PV. Studies on the occipital bone in Africa: II, resemblances and differences of occipital patterns among modern Africans[J]. Zeitschrift für Morphologie und Anthropologie, 1959, (H. 1):9-19 |
[29] | Tobias PV. Studies on the occipital bone in Africa: IV, components and correlations of occipital curvature in relation to cranial growth[J]. Human Biology, 1959,31(2):138-161 |
[30] | Tobias PV. Studies on the occipital bone in Africa: VI, the relative usefulness of pearson’s occipital index and the occipital chord-arc index[J]. Man, 1960,60:23-25 |
[31] | Babu YR, Kanchan T, Attiku Y, et al. Sex estimation from foramen magnum dimensions in an Indian population[J]. Journal of Forensic and Legal Medicine, 2012,19(3):162-167 |
[32] | Gapert R, Black S, Last J. Sex determination from the foramen magnum: discriminant function analysis in an eighteenth and nineteenth century British sample[J]. International Journal of Legal Medicine, 2009,123(1):25-33 |
[33] | Gruber P, Henneberg M, B?ni T, et al. Variability of human foramen magnum size[J]. The Anatomical Record, 2009,292(11):1713-1719 |
[34] | Günay Y, Altink?k M. The value of the size of foramen magnum in sex determination[J]. Journal of Clinical Forensic Medicine, 2000,7(3):147-149 |
[35] | Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’[J]. Italian Journal of Zoology, 2004,71(1):5-16 |
[36] | James Rohlf F, Marcus LF. A revolution morphometrics[J]. Trends in Ecology & Evolution, 1993,8(4):129-132 |
[37] | Vieira M, Mayo SJ, De Andrade IM. Geometric morphometrics of leaves of Anacardium microcarpum Ducke and A. occidentale L. (Anacardiaceae) from the coastal region of Piauí, Brazil[J]. Brazilian Journal of Botany, 2014,37(3):315-327 |
[38] | Ponton D. Is geometric morphometrics efficient for comparing otolith shape of different fish species?[J]. Journal of Morphology, 2006,267(6):750-757 |
[39] | Macholán M. A geometric morphometric analysis of the shape of the first upper molar in mice of the genus Mus (Muridae, Rodentia)[J]. Journal of Zoology, 2006,270(4):672-681 |
[40] | La Croix S, Holekamp KE, Shivik JA, et al. Ontogenetic relationships between cranium and mandible in coyotes and hyenas[J]. Journal of Morphology, 2011,272(6):662-674 |
[41] | Van Heteren AH, Maclarnon A, Soligo C, et al. Functional morphology of the cave bear (Ursus spelaeus) cranium: A three-dimensional geometric morphometric analysis[J]. Quaternary International, 2014, 339-340:209-216 |
[42] | Bonnan MF. Linear and geometric morphometric analysis of long bone scaling patterns in Jurassic neosauropod dinosaurs: Their functional and paleobiological implications[J]. Anatomical Record, 2007,290(9):1089-1111 |
[43] | Bookstein F, Sch?fer K, Prossinger H, et al. Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis[J]. Anatomical Record, 1999,257(6):217-224 |
[44] | Bookstein FL, Gunz P, Mitter?cker P, et al. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution[J]. Journal of Human Evolution, 2003,44(2):167-187 |
[45] | Delson E, Harvati K, Reddy D, et al. The Sambungmacan 3 Homo erectus calvaria: a comparative morphometric and morphological analysis[J]. Anatomical Record, 2001,262(4):380-397 |
[46] | Doyon L. On the shape of things: A geometric morphometrics approach to investigate Aurignacian group membership[J]. Journal of Archaeological Science, 2019,101:99-114 |
[47] | Xing S, Gibbon V, Clarke R, et al. Geometric morphometric analyses of orbit shape in Asian, African, and European human populations[J]. Anthropological Science, 2013,121(1):1-11 |
[48] | Pan L, Thackeray JF, Dumoncel J, et al. Intra-individual metameric variation expressed at the enamel-dentine junction of lower post-canine dentition of South African fossil hominins and modern humans[J]. American Journal of Physical Anthropology, 2017,163(4):806-815 |
[49] | Cui Y, Wu X. A geometric morphometric study of a Middle Pleistocene cranium from Hexian, China[J]. Journal of Human Evolution, 2015,88:54-69 |
[50] | Mitteroecker P, Gunz P, Bernhard M, et al. Comparison of cranial ontogenetic trajectories among great apes and humans[J]. Journal of Human Evolution, 2004,46(6):679-698 |
[51] | Zelditch ML, Swiderski DL, Sheets HD. Geometric morphometrics for biologists: a primer[M]. San Diego: Elsevier Academic Press, 2012 |
[52] | Rosas A, Bastir M. Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex[J]. American Journal of Physical Anthropology, 2002,117(3):236-245 |
[53] | Bigoni L, Velemínská J, Br?zek J. Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a Central European sample of known sex[J]. Homo, 2010,61(1):16-32 |
[54] | Wood CG, Lynch JM. Sexual dimorphism in the craniofacial skeleton of modern humans[M]. In: Marcus LF, Corti M, Loy A, et al. Advances in Morphometrics. New York; Plenum Press. 1996: 407-414 |
[55] | Kimmerle EH, Ross A, Slice D. Sexual dimorphism in America: geometric morphometric analysis of the craniofacial region[J]. Journal of Forensic Sciences, 2008,53(1):54-57 |
[56] | Franklin D, Freedman L, Milne N. Sexual dimorphism and discriminant function sexing in indigenous South African crania[J]. Homo, 2005,55(3):213-228 |
[57] | Maass P, Friedling LJ. Morphometric analysis of the neurocranium in an adult South African cadaveric sample[J]. Journal of Forensic Sciences, 2019,64(2):367-374 |
[58] | Ran L, Helal S, Moore S. Drishti: An integrated indoor/outdoor blind navigation system and service[CP]. 2004 |
[59] | Cignoni P, Callieri M, Corsini M, et al. Meshlab: an open-source mesh processing tool [CP]. 2008 |
[60] | Gould SJ. Allometry and size in ontogeny and phylogeny[J]. Biological Reviews, 1966,41(4):587-638 |
[61] | Schlichting CD, Pigliucci M. Phenotypic evolution: a reaction norm perspective[M]. Sunderland, Massachusetts: Sinauer Associates Inc., 1998 |
[62] | Gould SJ. Allometry in primates, with emphasis on scaling and the evolution of the brain[J]. Contributions to Primatology, 1975,5:244-292 |
[63] | Finlay BL, Darlington RB, Nicastro N. Developmental structure in brain evolution[J]. Behavioral and Brain Sciences, 2001,24(2):263-308 |
[64] | Martin RD. Relative brain size and basal metabolic rate in terrestrial vertebrates[J]. Nature, 1981,293(5827):57-60 |
[65] | Martin R. Allometric approaches to the evolution of the primate nervous system[M]. In. Primate brain evolution. Springer. 1982: 39-56 |
[66] | Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics[J]. Development Genes and Evolution, 2016,226(3):113-137 |
[67] | R Core Team. R: A language and environment for statistical computing[CP]. 2018, |
[68] | Adams DC, Otárola-Castillo E. geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013,4(4):393-399 |
[69] | Schlager S. Morpho and Rvcg-Shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations[M]. In: Zheng G, Li S, Székely G. Statistical shape and deformation analysis. Academic Press. 2017: 217-256 |
[70] | Dryden IL, Mardia KV. Statistical shape analysis: with applications in R[M]. John Wiley & Sons, 2016 |
[71] | Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse[J]. Journal of Open Source Software, 2019,4(43):1686 |
[72] | 赵永生, 曾雯, 魏成敏, 等. 大汶口文化居民枕部变形研究[J]. 东南文化, 2017(3):64-72 |
[73] | Schijman E. Artificial cranial deformation in newborns in the pre-Columbian Andes[J]. Child’s Nervous System, 2005,21(11):945-950 |
[74] | Harvati K, Weaver TD. Reliability of cranial morphology in reconstructing Neanderthal phylogeny[M]. In: Harvati K, Harrison T. Neanderthals revisited: new approaches and perspectives. Dordrecht; Springer. 2006: 239-254 |
[75] | Biegert J. The evaluation of characteristics of the skull, hands and feet for primate taxonomy[M]. In. Classification and Human Evolution. Aldine, Chicago; Taylor & Francis. 1963: 116-145 |
[76] | Strait DS, Ross CF. Kinematic data on primate head and neck posture: Implications for the evolution of basicranial flexion and an evaluation of registration planes used in paleoanthropology[J]. American Journal of Physical Anthropology, 1999,108(2):205-222 |
[77] | Strait DS. The scaling of basicranial flexion and length[J]. Journal of Human Evolution, 1999,37(5):701-719 |
[78] | Lieberman DE, Ross CF, Ravosa MJ. The primate cranial base: ontogeny, function, and integration[J]. American Journal of Physical Anthropology, 2000,113(S31):117-169 |
[79] | Lahr MM, Wright RVS. The question of robusticity and the relationship between cranial size and shape in Homo sapiens[J]. Journal of Human Evolution, 1996,31(2):157-191 |
/
〈 | 〉 |