Research Articles

Elemental geochemistry records of metallurgical activities during the late Neolithic and Bronze age in the Xichengyi site, Zhangye

  • Guoke CHEN ,
  • Yishi YANG ,
  • Shanjia ZHANG ,
  • Hui WANG
Expand
  • 1. Institute of Cultural Relics and Archaeology of Gansu Province, Lanzhou 730000
    2. College of Earth & Environmental Sciences, Lanzhou University, Lanzhou 730000

Received date: 2018-07-24

  Revised date: 2018-12-16

  Online published: 2021-02-25

Abstract

This paper describes elemental geochemical analysis of natural and anthropogenic sediment samples systematically collected from the Xichengyi late Neolithic-Bronze Age site at Zhangye, and combined high-resolution radiocarbon (14C) dates of charred plants seeds with the latest archaeological findings. Results indicated characteristic human activities between 4200 and 3500 BP cal including changes in the intensity of human smelting activities during different prehistoric phases. Variations in Rb/Sr, magnetic susceptibility and heavy metals (Cu, Zn, Pb, As and Ni) suggested that with an increase in human activities, copper smelting began to appear from 4200 to 4000 BP cal. Copper smelting substantially increased between 4000 and 3700 BP cal and declined after 3700 BP cal.

Cite this article

Guoke CHEN , Yishi YANG , Shanjia ZHANG , Hui WANG . Elemental geochemistry records of metallurgical activities during the late Neolithic and Bronze age in the Xichengyi site, Zhangye[J]. Acta Anthropologica Sinica, 2021 , 40(01) : 87 -96 . DOI: 10.16359/j.cnki.cn11-1963/q.2019.0012

References

[1] Crutzen PJ. Geology of mankind[J]. Nature, 2002, 415(6867): 23
[2] Crutzen PJ, Stoemer EF. The “Anthropocene”[R]. IGBP Newsletter, 2000, 41:17-18
[3] Foley SF, Gronenborn D, Andreae MO, et al. The Palaeoanthropocene - The beginnings of anthropogenic environmental change[J]. Anthropocene, 2013, 3:83-88
[4] 刘东生. 科学工作假说(Working Hypojournal)是科学创新的基础[J]. 第四纪研究, 2006, 26(5): 673-677
[5] Roberts BW, Thornton CP, Pigott VC. Development of metallurgy in Eurasia[J]. Antiquity, 2009, 83(322): 1012-1022
[6] Jones MK, Harriet H, Kneale CJ, et al. Food globalisation in prehistory: The agrarian foundation of an interconnected continent[J]. Journal of the British Academy. 2016, 4:73-87
[7] Dong GH, Yang YS, Han JY, et al. Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption[J]. Science China Earth Sciences, 2017, 60(6): 1110-1123
[8] Linduff KM, Mei JJ. Metallurgy in Ancient Eastern Asia: Retrospect and Prospects[J]. Journal of World Prehistory, 2009, 22(3): 265-281
[9] 杨建华, 邵会秋. 欧亚草原东部金属之路的形成[J]. 文物, 2017(6): 60-74
[10] 董广辉, 张山佳, 杨谊时, 等. 中国北方新石器时代农业强化及对环境的影响[J]. 科学通报, 2016, 61(26): 2913
[11] Gignoux CR, Bar-Yosef O. Rapid, global demographic expansions after the origins of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6044-6049
[12] Biraben JN. The rising numbers of humankind.[J]. Population & Societies, 2003, 394:1-4
[13] Hong S, Candelone JP, Patterson CC, et al. History of ancient copper smelting pollution during roman and medieval times recording in Greenland ice[J]. Science. 1996, 272(5259): 246
[14] Monna F, Galop D, Carozza L, et al. Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit[J]. Science of the Total Environment, 2004, 327(1-3): 197-214
[15] Nocete F, álex E, Nieto JM, et al. An archaeological approach to regional environmental pollution in the south-western Iberian Peninsula related to Third millennium BC mining and metallurgy[J]. Journal of Archaeological Science, 2005, 32(10): 1566-1576
[16] Martínez CA, Lópezmerino L, Bindler R, et al. Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in Southwestern Europe[J]. Science of the Total Environment, 2015, 545-546:398-406
[17] Zhuang Y, Kidder TR. Archaeology of the Anthropocene in the Yellow River region, China, 8000-2000 cal. BP. Holocene, 2014, 24:1602-1623
[18] 李小强, 纪明, 周新郢, 等. 甘肃东灰山遗址3700~3400 cal BP人类活动的元素地球化学记录[J]. 地球环境学报, 2010, 1(1): 48-51
[19] 李小强, 赵克良, 纪明, 等. 河西走廊西部全新世气候环境变化的元素地球化学记录[J]. 人类学学报, 2013, 32(1): 110-120
[20] Zhang S, Yang Y, Storozum MJ, et al. Copper smelting and sediment pollution in Bronze Age China: A case study in the Hexi corridor, Northwest China[J]. Catena, 2017, 156:92-101
[21] Yang Y, Dong G, Zhang S, et al. Copper content in anthropogenic sediments as a tracer for detecting smelting activities and its impact on environment during prehistoric period in Hexi Corridor, Northwest China[J]. Holocene, 2016, 27(2): 282-291
[22] Lee CS, Qi SH, Zhang G, et al. Seven thousand years of records on the mining and utilization of metals from lake sediments in central China[J]. Environmental Science & Technology, 2008, 42(13): 4732-8
[23] Dodson JR, Li X, Zhou X, et al. Origin and spread of wheat in China[J]. Quaternary Science Reviews, 2013, 72(2): 108-111
[24] 董广辉, 杨谊时, 韩建业, 等. 农作物传播视角下的欧亚大陆史前东西方文化交流[J]. 中国科学:地球科学, 2017, 47(5): 530-543
[25] 李水城. 西北与中原早期冶铜业的区域特征及交互作用[J]. 考古学报, 2005, 3:239-278
[26] 陈国科. 西城驿——齐家冶金共同体——河西走廊地区早期冶金人群及相关问题初探[J]. 考古与文物, 2017, 5:37-44
[27] 杨谊时, 石乃玉, 史志林. 考古发现所见河西走廊史前的农业双向传播[J]. 敦煌学辑刊, 2016, 1(1): 82-91
[28] 陈国科, 王辉, 李延祥, 等. 甘肃张掖市西城驿遗址[J]. 考古, 2014, 7:3-17
[29] Ramsey CB. Methods for Summarizing Radiocarbon Datasets[J]. Radiocarbon, 2017, 59(6): 1-25
[30] Reimer PJ, Bard E, Bayliss A, et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887
[31] 张雪莲, 张良仁, 王辉, 等. 张掖市西城驿遗址的碳十四测年及初步分析[J]. 华夏考古, 2015, 4:38-45
[32] Dong G, Wang Z, Ren L, et al. A comparative study of radiocarbon dating charcoal and charred seeds from the same flotation samples in the Late Neolithic and Bronze Age sites in the Gansu and Qinghai Provinces, northwest China[J]. Radiocarbon, 2014, 56(1): 157-163
[33] 张雪莲, 仇士华, 钟建, 等. 放射性碳素测定年代报告(四一)[J]. 考古, 2015, 7:107-109
[34] Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1-4): 67-88
[35] 陈骏, 汪永进, 陈旸, 等. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报, 2001, 75(2): 259-266
[36] Li X, Sun N, Dodson J, et al. The impact of early smelting on the environment of Huoshiliang in Hexi Corridor, NW China, as recorded by fossil charcoal and chemical elements[J]. Palaeogeography Palaeoclimatology Palaeoecology. 2011, 305(1-4): 329-336
[37] Zhou X, Li X, Dodson J, et al. Rapid agricultural transformation in the prehistoric Hexi corridor, China[J]. Quaternary International, 2016, 426(28): 33-41
[38] Heller F, Liu TS. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China[J]. Geophys.res.lett, 1986, 13(11): 1169-1172
[39] An Z, Kukla GJ, Porter SC, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research, 1991, 36(1): 29-36
[40] Fang XM, Ono Y, Fukusawa H, et al. Asian summer monsoon instability during the past 60,000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau[J]. Earth & Planetary Science Letters, 1999, 168(3-4): 219-232
[41] 史威, 朱诚, 徐伟峰, 等. 重庆中坝遗址剖面磁化率异常与人类活动的关系[J]. 地理学报, 2007, 62(3): 257-267
[42] 李续彬, 强小科, 符超峰, 等. 甘肃西山坪遗址岩石磁学性质及其研究意义探讨[J]. 地球物理学进展, 2010, 25(2): 500-511
[43] 何翔宇, 吴克宁, 查理思, 等. 古人类活动对土壤理化性质的影响——以河南仰韶村文化遗址为例[J]. 土壤, 2017, 49(5): 1038-1048
[44] 吴克宁, 王文静, 查理思, 等. 文化遗址区古土壤特性及古环境研究进展[J]. 土壤学报, 2014, 6:1169-1182
[45] 国家文物局. 中国文物地图集:甘肃省分册[M]. 北京: 测绘出版社, 2011
[46] Liu X, Lightfoot E, O’Connell TC, et al. From necessity to choice: dietary revolutions in west China in the second millennium BC[J]. World Archaeology. 2014, 46(5): 661-680
[47] 陈国科, 李延祥, 潜伟, 等. 张掖西城驿遗址出土铜器的初步研究[J]. 考古与文物, 2015, 2:105-118
[48] 李延祥, 陈国科, 潜伟, 等. 张掖西城驿遗址冶铸遗物研究[J]. 考古与文物, 2015, 2:119-128
[49] 甘肃省文物考古研究所, 北京大学考古文博学院. 河西走廊史前考古调查报告[M]. 北京: 文物出版社, 2011
[50] Dodson J, Li X, Ji M, et al. Early bronze in two Holocene archaeological sites in Gansu, NW China[J]. Quaternary Research, 2009, 72(3): 309-314
[51] 李延祥, 陈国科, 潜伟, 等. 敦煌西土沟遗址冶金遗物研究[J]. 敦煌研究, 2018, 2:131-140
Outlines

/