Reviews

An application prospect of paleoproteomic analysis in the evolution of East Asian populations

  • Huiyun RAO
Expand
  • 1. Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044
    2. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044

Received date: 2021-12-01

  Revised date: 2022-03-14

  Online published: 2022-12-19

Abstract

The evolutionary history of East Asian populations has involved several multidisciplinary approaches, but this review will bring in a different type of analysis, that of paleoproteomic analysis. Compared with ancient DNA, ancient proteins can preserve in (sub)tropical areas, thus offering significant potential in tracking human evolutionary history. Abundant human fossils have been discovered in East Asia, including Homo erectus, archaic Homo sapiens, early modern humans and late Homo sapiens, which generally form a continuous sequence. However, molecular evidences from the Pleistocene or earlier samples are scarce. In order to promote the application of paleoproteomic analysis in East Asia, this paper reviews its history, potential, challenges and future prospects. Key highlights are listed below. 1) Although ancient protein analysis goes back to 1954, its development was quite slow until the advent of soft-ionization mass spectrometry in 2000. Advances in high-resolution and high-throughput instrumentation now allow researchers to study ancient proteomes; a study that has been well employed in archaeological and evolutionary research. 2) Enamel, dentine and bone are three main substrates for protein preservation in human fossils, with enamel possessing the highest potential for deep-time survival. The earliest enamel proteome sequences were retrieved from a 1.9 MaBP Gigantopithecus molar from South China, with a thermal age of 11.8 MaBP at 10°C. 3) Different taxonomic groups and protein types have diverse amino acid substitution rates. Based on current researches, there are certain mutation positions along the main proteins of bones and teeth from human fossils that could help construct human evolutionary history in broader space and deeper time. 4) Paleoproteomic analysis faces the challenges of low endogenous protein content in fossil samples and a lack of full reference database. 5) Further methodological exploration should focus on three aspects, i.e., optimization of extraction methods, automatic species identification of ZooMS spectra and in-depth interpretation of mass spectrometry data. With an accumulation of more molecular evidence, especially from earlier human fossils which are out of reach for ancient DNA, paleoproteomic analysis could provide more clues in helping to draw a more accurate and clear phylogenetic tree on human evolutionary history in East Asia.

Cite this article

Huiyun RAO . An application prospect of paleoproteomic analysis in the evolution of East Asian populations[J]. Acta Anthropologica Sinica, 2022 , 41(06) : 1083 -1096 . DOI: 10.16359/j.1000-3193/AAS.2022.0051

References

[1] 刘武, 吴秀杰, 邢松, 等. 中国古人类化石[M]. 北京: 科学出版社, 2014
[2] 刘武, 吴秀杰, 邢松. 现代人的出现与扩散——中国的化石证据[J]. 人类学学报, 2016, 35(2):161-171
[3] 刘武, 吴秀杰, 邢松. 更新世中期中国古人类演化区域连续性与多样性的化石证据[J]. 人类学学报, 2019, 38(4): 473-490
[4] 刘武, 邢松, 吴秀杰. 中更新世晚期以来中国古人类化石形态特征的多样性[J]. 中国科学:地球科学, 2016, 46(7): 906-917
[5] 吴秀杰. 中国古人类演化研究进展及相关热点问题探讨[J]. 科学通报, 2018, 63(21): 2148-2155
[6] 吴秀杰. 中国发现的主要直立人头骨化石[J]. 科学, 2019, 71(3): 20-24
[7] 刘武, 邢松, 张银运. 中国直立人牙齿特征变异及其演化意义[J]. 人类学学报, 2015, 34(4): 425-441
[8] Wu XJ, Pei SW, Cai YJ, et al. Morphological description and evolutionary significance of 300 ka hominin facial bones from Hualongdong, China[J]. Journal of Human Evolution, 2021, 161: 103052
[9] Ke YH, Su B, Song XF, et al. African origin of modern humans in East Asia: A tale of 12,000 Y chromosomes[J]. Science, 2001, 292(5519): 1151-1153
[10] Zhang DJ, Xia H, Chen FH, et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau[J]. Science, 2020, 370(6516): 584-587
[11] Wang CC, Yeh HY, Popov AN, et al. Genomic insights into the formation of human populations in East Asia[J]. Nature, 2021, 591(7850): 413-419
[12] Zhang F, Ning C, Scott A, et al. The genomic origins of the Bronze Age Tarim Basin mummies[J]. Nature, 2021, 599(7884): 256-261
[13] Robbeets M, Bouckaert R, Conte M, et al. Triangulation supports agricultural spread of the Transeurasian languages[J]. Nature, 2021, 599: 616-621
[14] Mao XW, Zhang HC, Qiao SY, et al. The deep population history of northern East Asia from the Late Pleistocene to the Holocene[J]. Cell, 2021, 184(12): 3256-3266.e3213
[15] Wang TY, Wang W, Xie GM, et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago[J]. Cell, 2021, 184(14): 3829-3841.e3821
[16] Yang MA, Fan XC, Sun B, et al. Ancient DNA indicates human population shifts and admixture in northern and southern China[J]. Science, 2020, 369(6501): 282-288
[17] Bai F, Zhang XL, Ji XP, et al. Paleolithic genetic link between Southern China and Mainland Southeast Asia revealed by ancient mitochondrial genomes[J]. Journal of Human Genetics, 2020, 65(12): 1125-1128
[18] Liu YL, Wang TY, Wu XC, et al. Maternal genetic history of southern East Asians over the past 12,000 years[J]. Journal of Genetics and Genomics, 2021, 48(10): 899-907
[19] Demarchi B, Hall S, Roncal-Herrero T, et al. Protein sequences bound to mineral surfaces persist into deep time[J]. Elife, 2016, 5: e17092
[20] Welker F, Ramos-Madrigal J, Kuhlwilm M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine[J]. Nature, 2019, 576: 262-265
[21] Welker F, Hajdinjak M, Talamo S, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Chatelperronian at the Grotte du Renne[J]. Proceedings of the National Academy of Sciences, 2016, 113(4): 11162-11167
[22] Presslee S, Slater GJ, Pujos F, et al. Palaeoproteomics resolves sloth relationships[J]. Nature Ecology & Evolution, 2019, 3: 1121-1130
[23] Cappellini E, Welker F, Pandolfi L, et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny[J]. Nature, 2019, 574: 103-107
[24] Chen FH, Welker F, Shen CC, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019, 569(7756): 409-412
[25] Welker F, Ramos-Madrigal J, Gutenbrunner P, et al. The dental proteome of Homo antecessor[J]. Nature, 2020, 580: 235-238
[26] Cappellini E, Collins MJ, Gilbert MTP. Unlocking ancient protein palimpsests[J]. Science, 2014, 343(6177): 1320-1322
[27] Tomiak P, Penkman K, Hendy E, et al. Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons[J]. Quaternary Geochronology, 2013, 16: 87-109
[28] Allentoft ME, Collins M, Harker D, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2012, 279(1748): 4724-4733
[29] Cappellini E, Jensen LJ, Szklarczyk D, et al. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins[J]. Journal of Proteome Research, 2011, 11(2): 917-926
[30] Abelson PH. Paleobiochemistry: Organic constituents of fossils[M]. Washington, DC: Carnegie Institution of Washington, Yearbook, No 53, 1954: 97-101
[31] Abelson PH. Amino acids in fossils[J]. Science, 1954, 119(3096): 576
[32] Demarchi B, Collins M. Amino acid racemization dating[J]. Encyclopedia of Earth Sciences, 2015: 13-26
[33] Penkman KE, Preece RC, Bridgland DR, et al. A chronological framework for the British Quaternary based on Bithynia opercula[J]. Nature, 2011, 476(7361): 446-449
[34] Craig OE, Collins MJ. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture[J]. Journal of Immunological Methods, 2000, 236(1): 89-97
[35] H?gberg A, Puseman K, Yost C. Integration of use-wear with protein residue analysis - a study of tool use and function in the south Scandinavian Early Neolithic[J]. Journal of Archaeological Science, 2009, 36(8): 1725-1737
[36] Seeman MF, Nilsson NE, Summers GL, et al. Evaluating protein residues on Gainey phase Paleoindian stone tools[J]. Journal of Archaeological Science, 2008, 35(10): 2742-2750
[37] Cartechini L, Vagnini M, Palmieri M, et al. Immunodetection of proteins in ancient paint media[J]. Accounts of Chemical Research, 2010, 43(6): 867-876
[38] Scott DA, Warmlander S, Mazurek J, et al. Examination of some pigments, grounds and media from Egyptian cartonnage fragments in the Petrie Museum, University College London[J]. Journal of Archaeological Science, 2009, 36(3): 923-932
[39] Zheng HL, Yang HL, Zhang W, et al. Insight of silk relics of mineralized preservation in Maoling Mausoleum using two enzyme-linked immunological methods[J]. Journal of Archaeological Science, 2020, 115: 105089
[40] Schweitzer MH, Suo Z, Avci R, et al. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein[J]. Science, 2007, 316(5822): 277-280
[41] Bailleul AM, Zheng W, Horner JR, et al. Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage[J]. National Science Review, 2020, 7(4): 815-822
[42] Pan YH, Zheng WX, Sawyer RH, et al. The molecular evolution of feathers with direct evidence from fossils[J]. Proceedings of the National Academy of Sciences, 2019, 116(8): 3018-3023
[43] Pan YH, Zheng WX, Moyer AE, et al. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): E7900-E7907
[44] Ostrom PH, Schall M, Gandhi H, et al. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 1043-1050
[45] Buckley M, Kansa SW, Howard S, et al. Distinguishing between archaeological sheep and goat bones using a single collagen peptide[J]. Journal of Archaeological Science, 2010, 37(1): 13-20
[46] Buckley M, Collins M, Thomas-Oates J, et al. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2009, 23(23): 3843-3854
[47] Welker F, Soressi M, Rendu W, et al. Using ZooMS to identify fragmentary bone from the late Middle/Early Upper Palaeolithic sequence of Les Cottes, France[J]. Journal of Archaeological Science, 2015, 54: 279-286
[48] Biard V, Gol’din P, Gladilina E, et al. Genomic and proteomic identification of Late Holocene remains: Setting baselines for Black Sea odontocetes[J]. Journal of Archaeological Science: Reports, 2017, 15: 262-271
[49] Presslee S, Wilson J, Woolley J, et al. The identification of archaeological eggshell using peptide markers[J]. STAR: Science & Technology of Archaeological Research, 2018, 4(1): 13-23
[50] Brown S, Higham T, Slon V, et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis[J]. Scientific Reports, 2016, 6: 23559
[51] Slon V, Mafessoni F, Vernot B, et al. The genome of the offspring of a Neanderthal mother and a Denisovan father[J]. Nature, 2018, 561(7721): 113-116
[52] Sinet-Mathiot V, Smith GM, Romandini M, et al. Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at Fumane (Italy)[J]. Scientific Reports, 2019, 9(1): 12350
[53] Dekker J, Sinet-Mathiot V, Spithoven M, et al. Human and cervid osseous materials used for barbed point manufacture in Mesolithic Doggerland[J]. Journal of Archaeological Science: Reports, 2021, 35: 102678
[54] Kirby D, Buckley M, Promise E, et al. Identification of collagen-based materials in cultural heritage[J]. Analyst, 2013, 138(17): 4849-4858
[55] Martisius NL, Welker F, Dogand?i? T, et al. Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals[J]. Scientific Reports, 2020, 10(1): 7746
[56] Hendy J, Colonese AC, Franz I, et al. Ancient proteins from ceramic vessels at ?atalh?yük West reveal the hidden cuisine of early farmers[J]. Nature Communications, 2018, 9(1): 4064
[57] Bleasdale M, Richter KK, Janzen A, et al. Ancient proteins provide evidence of dairy consumption in eastern Africa[J]. Nature Communications, 2021, 12(1): 632
[58] Maixner F, Turaev D, Cazenave-Gassiot A, et al. The Iceman’s last meal consisted of fat, wild meat, and cereals[J]. Current Biology, 2018, 28(14): 2348-2355.e9
[59] Brandt L?, Schmidt AL, Mannering U, et al. Species identification of archaeological skin objects from Danish Bogs: Comparison between mass spectrometry-based peptide sequencing and microscopy-based methods[J]. PLoS ONE, 2014, 9(9): e106875
[60] Li L, Gong YX, Yin H, et al. Different types of peptide detected by mass spectrometry among fresh silk and archaeological silk remains for distinguishing modern contamination[J]. PloS ONE, 2015, 10(7): e0132827
[61] Solazzo C, Heald S, Ballard MW, et al. Proteomics and Coast Salish blankets: A tale of shaggy dogs?[J]. Antiquity, 2011, 85(330): 1418-1432
[62] Dallongeville S, Richter M, Sch?fer S, et al. Proteomics applied to the authentication of fish glue: Application to a 17th century artwork sample[J]. Analyst, 2013, 138(18): 5357-5364
[63] Rao HY, Li B, Yang YM, et al. Proteomic identification of organic additives in the mortars of ancient Chinese wooden buildings[J]. Analytical Methods, 2015, 7: 143-149
[64] Rao HY, Yang YM, Abuduresule I, et al. Proteomic identification of adhesive on a bone sculpture-inlaid wooden artifact from the Xiaohe Cemetery, Xinjiang, China[J]. Journal of Archaeological Science, 2015, 53: 148-155
[65] Rebay-Salisbury K, Janker L, Pany-Kucera D, et al. Child murder in the Early Bronze Age: Proteomic sex identification of a cold case from Schleinbach, Austria[J]. Archaeological and Anthropological Sciences, 2020, 12: 265
[66] Stewart NA, Gerlach RF, Gowland RL, et al. Sex determination of human remains from peptides in tooth enamel[J]. Proceedings of the National Academy of Sciences, 2017, 114(52): 13649-13654
[67] Warinner C, Rodrigues JFM, Vyas R, et al. Pathogens and host immunity in the ancient human oral cavity[J]. Nature Genetics, 2014, 46(4): 336-344
[68] Hendy J, Collins M, Teoh KY, et al. The challenge of identifying tuberculosis proteins in archaeological tissues[J]. Journal of Archaeological Science, 2016, 66: 146-153
[69] Buckley M. A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order ‘Bibymalagasia’[J]. PloS ONE, 2013, 8(3): e59614
[70] Welker F, Collins MJ, Thomas JA, et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates[J]. Nature, 2015, 522(7554): 81-84
[71] Welker F, Smith GM, Hutson JM, et al. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae[J]. PeerJ, 2017, 5: e3033
[72] Buckley M, Lawless C, Rybczynski N. Collagen sequence analysis of fossil camels, Camelops and c.f. Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North America[J]. Journal of Proteomics, 2019, 194: 218-225
[73] Welker F. Palaeoproteomics for human evolution studies[J]. Quaternary Science Reviews, 2018, 190: 137-147
[74] Warren M. Move over, DNA: Ancient proteins are starting to reveal humanity’s history[J]. Nature, 2019, 570(7762): 433-436
[75] Qu T, Tomar V. Understanding straining induced changes in thermal properties of tropocollagen-hydroxyapatite interfacial configurations[J]. International Journal of Experimental and Computational Biomechanics, 2015, 3(1): 62-81
[76] Smith CEL A. PJ, Agne A, et al. Amelogenesis imperfecta; Genes, proteins, and pathways[J]. Frontiers in Physiology, 2017, 8: 435
[77] Schweitzer MH, Schroeter ER, Cleland TP, et al. Paleoproteomics of mesozoic dinosaurs and other Mesozoic fossils[J]. Paleoproteomics, 2019, 19(16): 1800251
[78] Saitta ET, Liang R, Lau MCY, et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities[J]. eLife, 2019, 8: e46205
[79] Asara JM, Schweitzer MH, Freimark LM, et al. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry[J]. Science, 2007, 316(5822): 280-285
[80] Pevzner PA, Kim S, Ng J. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”[J]. Science, 2008, 321(5892): 1040
[81] Buckley M, Walker A, Ho SY, et al. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry”[J]. Science, 2008, 319(5859): 33 c
[82] Schroeter ER, DeHart CJ, Cleland TP, et al. Expansion for the Brachylophosaurus canadensis collagen I sequence and additional evidence of the preservation of Cretaceous protein[J]. Journal of Proteome Research, 2017, 16(2): 920-932
[83] Matthiesen H, H?ier Eriksen AM, Hollesen J, et al. Bone degradation at five Arctic archaeological sites: Quantifying the importance of burial environment and bone characteristics[J]. Journal of Archaeological Science, 2021, 125: 105296
[84] Kimura S, Ohno Y. Fish type I collagen: Tissue-specific existence of two molecular forms, (α1)2α2 and α1α2α3, in Alaska pollack[J]. Comparative Biochemistry Physiology Part B: Comparative Biochemistry, 1987, 88(2): 409-413
[85] Buckley M. Zooarchaeology by mass spectrometry (ZooMS) collagen fingerprinting for the species identification of archaeological bone fragments[M]. Zooarchaeology in Practice. Springer. 2018: 227-247
[86] Hajdinjak M, Fu Q, Hübner A, et al. Reconstructing the genetic history of late Neanderthals[J]. Nature, 2018, 555(7698): 652-656
[87] Prüfer K, de Filippo C, Grote S, et al. A high-coverage Neandertal genome from Vindija Cave in Croatia[J]. Science, 2017, 358(6363): 655-658
[88] Meyer M, Arsuaga JL, de Filippo C, et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins[J]. Nature, 2016, 531(7595): 504-507
[89] Prüfer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai mountains[J]. Nature, 2014, 505(7481): 43-49
[90] Castellano S, Parra G, Sánchez-Quinto F, et al. Patterns of coding variation in the complete exomes of three Neandertals[J]. Proceedings of the National Academy of Sciences, 2014, 111(18): 6666-6671
[91] Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual[J]. Science, 2012, 338(6104): 222-226
[92] Hendy J, Welker F, Demarchi B, et al. A guide to ancient protein studies[J]. Nature Ecology & Evolution, 2018, 2(5): 791-799
[93] Hollund H, Ariese F, Fernandes R, et al. Testing an alternative high‐throughput tool for investigating bone diagenesis: FTIR in Attenuated Total Reflection (ATR) mode[J]. Archaeometry, 2013, 55(3): 507-532
[94] Pal Chowdhury M, Wogelius R, Manning PL, et al. Collagen deamidation in archaeological bone as an assessment for relative decay rates[J]. Archaeometry, 2019, 61(6): 1382-1398
[95] Sponheimer M, Ryder CM, Fewlass H, et al. Saving old bones: A non-destructive method for bone collagen prescreening[J]. Scientific Reports, 2019, 9(1): 13928
[96] Madden O, Chan DMW, Dundon M, et al. Quantifying collagen quality in archaeological bone: Improving data accuracy with benchtop and handheld Raman spectrometers[J]. Journal of Archaeological Science: Reports, 2018, 18: 596-605
[97] Rao HY, Yang YM, Liu JY, et al. Palaeoproteomic analysis of Pleistocene cave hyenas from east Asia[J]. Scientific Reports, 2020, 10: 16674
[98] Wilson J, van Doorn NL, Collins MJ. Assessing the extent of bone degradation using glutamine deamidation in collagen[J]. Analytical Chemistry, 2012, 84(21): 9041-9048
[99] Rams?e A, van Heekeren V, Ponce P, et al. DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity of members of ancient proteomes[J]. Journal of Archaeological Science, 2020, 115: 105080
[100] Simpson JP, Fascione M, Bergstr?m E, et al. Ionisation bias undermines the use of matrix-assisted laser desorption/ionisation for estimating peptide deamidation: Synthetic peptide studies demonstrate electrospray ionisation gives more reliable response ratios[J]. Rapid Communications in Mass Spectrometry, 2019, 33(12): 1049-1057
[101] Simpson JP, Penkman KEH, Demarchi B, et al. The effects of demineralisation and sampling point variability on the measurement of glutamine deamidation in type I collagen extracted from bone[J]. Journal of Archaeological Science, 2016, 69: 29-38
[102] Schroeter ER, Cleland TP. Glutamine deamidation: An indicator of antiquity, or preservational quality?[J]. Rapid Communications in Mass Spectrometry, 2016, 30(2): 251-255
[103] Pal Chowdhury M, Buckley M. Trends in deamidation across archaeological bones, ceramics and dental calculus[J]. Methods, 2022, 200: 67-79
[104] Robinson NE, Robinson ZW, Robinson BR, et al. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides[J]. The Journal of Peptide Research, 2004, 63(5): 426-436
[105] Van Doorn NL, Wilson J, Hollund H, et al. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2319-2327
[106] Welker F. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment[J]. BMC Evolutionary Biology, 2018, 18(1): 23
[107] Nielsen-Marsh CM, Stegemann C, Hoffmann R, et al. Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS[J]. Journal of Archaeological Science, 2009, 36(2009): 1758-1763
[108] Nielsen-Marsh CM, Richards MP, Hauschka PV, et al. Osteocalcin protein sequences of Neanderthals and modern primates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4409-4413
[109] Fiddyment S, Holsinger B, Ruzzier C, et al. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting[J]. Proceedings of the National Academy of Sciences, 2015, 112(49): 15066-15071
[110] McGrath K, Rowsell K, Gates St-Pierre C, et al. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: Examples from Iroquoian bone points[J]. Scientific Reports, 2019, 9(1): 11027
[111] Ntasi G, Kirby D, Stanzione I, et al. A versatile and user-friendly approach for the analysis of proteins in ancient and historical objects[J]. Journal of Proteomics, 2021, 231: 104039
[112] Zilberstein G, Zilberstein R, Zilberstein S, et al. Proteomics and metabolomics composition of the ink of a letter in a fragment of a Dead Sea scroll from Cave 11 (P1032-Fr0)[J]. Journal of Proteomics, 2021, 249: 104370
[113] Righetti PG, Zilberstein G, Zilberstein S. New baits for fishing in cultural heritage’s Mare Magnum[J]. Journal of Proteomics, 2021, 235: 104113
[114] Wang NH, Brown S, Ditchfield P, et al. Testing the efficacy and comparability of ZooMS protocols on archaeological bone[J]. Journal of Proteomics, 2021, 233: 104078
[115] Lanigan LT, Mackie M, Feine S, et al. Multi-protease analysis of Pleistocene bone proteomes[J]. Journal of Proteomics, 2020, 228: 103889
[116] Gu MX, Buckley M. Semi-supervised machine learning for automated species identification by collagen peptide mass fingerprinting[J]. BMC Bioinformatics, 2018, 19(1): 241
[117] Hickinbotham S, Fiddyment S, Stinson TL, et al. How to get your goat: Automated identification of species from MALDI-ToF spectra[J]. Bioinformatics, 2020, 36(12): 3719-3725
[118] Tran NH, Zhang X, Xin L, et al. De novo peptide sequencing by deep learning[J]. Proceedings of the National Academy of Sciences, 2017, 114(31): 8247-8252
[119] Tiwary S, Levy R, Gutenbrunner P, et al. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis[J]. Nature Methods, 2019, 16(6): 519-525
[120] Zohora FT, Rahman MZ, Tran NH, et al. DeepIso: A deep learning model for peptide feature detection from LC-MS map[J]. Scientific Reports, 2019, 9(1): 17168
[121] Qiao R, Tran NH, Xin L, et al. Computationally instrument-resolution-independent de novo peptide sequencing for high-resolution devices[J]. Nature Machine Intelligence, 2021, 3(5): 420-425
[122] Zhou WJ, Wei ZH, He SM, et al. pValid 2: A deep learning based validation method for peptide identification in shotgun proteomics with increased discriminating power[J]. Journal of Proteomics, 2022, 251: 104414
[123] Parker GJ, Yip JM, Eerkens JW, et al. Sex estimation using sexually dimorphic amelogenin protein fragments in human enamel[J]. Journal of Archaeological Science, 2019, 101: 169-180
[124] Sawafuji R, Cappellini E, Nagaoka T, et al. Proteomic profiling of archaeological human bone[J]. Royal Society Open Science, 2017, 4(6): 161004
[125] Runge AKW, Hendy J, Richter KK, et al. Palaeoproteomic analyses of dog palaeofaeces reveal a preserved dietary and host digestive proteome[J]. Proceedings of the Royal Society B, 2021, 288(1954): 20210020
[126] 高锐, 张晓鹏, 崔永镇, 等. 蛋白质组学研究进展[J]. 畜牧兽医科技信息, 2007(12): 13-16
[127] Yang YM, Shevchenko A, Knaust A, et al. Proteomics evidence for kefir dairy in Early Bronze Age China[J]. Journal of Archaeological Science, 2014, 45: 178-186
[128] Ni XJ, Ji Q, Wu WS, et al. Massive cranium from Harbin in northeastern China establishes a new Middle Pleistocene human lineage[J]. The Innovation, 2021, 2(3): 100130
[129] Gokhman D, Mishol N, de Manuel M, et al. Reconstructing Denisovan anatomy using DNA methylation maps[J]. Cell, 2019, 179(1): 180-192.e110
Outlines

/